L(s) = 1 | + (−14.5 + 6.70i)2-s + (166. − 194. i)4-s − 279.·5-s + 2.62e3i·7-s + (−1.10e3 + 3.94e3i)8-s + (4.06e3 − 1.87e3i)10-s − 2.30e3i·11-s + 4.70e4·13-s + (−1.76e4 − 3.81e4i)14-s + (−1.03e4 − 6.47e4i)16-s + 5.19e4·17-s − 5.95e4i·19-s + (−4.64e4 + 5.44e4i)20-s + (1.54e4 + 3.34e4i)22-s − 7.75e4i·23-s + ⋯ |
L(s) = 1 | + (−0.907 + 0.419i)2-s + (0.648 − 0.760i)4-s − 0.447·5-s + 1.09i·7-s + (−0.270 + 0.962i)8-s + (0.406 − 0.187i)10-s − 0.157i·11-s + 1.64·13-s + (−0.458 − 0.993i)14-s + (−0.158 − 0.987i)16-s + 0.622·17-s − 0.456i·19-s + (−0.290 + 0.340i)20-s + (0.0658 + 0.142i)22-s − 0.277i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.648 - 0.760i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.648 - 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.291761976\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.291761976\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (14.5 - 6.70i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 279.T \) |
good | 7 | \( 1 - 2.62e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 2.30e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 4.70e4T + 8.15e8T^{2} \) |
| 17 | \( 1 - 5.19e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 5.95e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 + 7.75e4iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 9.02e5T + 5.00e11T^{2} \) |
| 31 | \( 1 - 3.40e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 + 5.84e5T + 3.51e12T^{2} \) |
| 41 | \( 1 + 2.93e5T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.95e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 5.03e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 7.54e6T + 6.22e13T^{2} \) |
| 59 | \( 1 + 8.82e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 1.08e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.44e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 - 3.71e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 3.62e7T + 8.06e14T^{2} \) |
| 79 | \( 1 - 4.88e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 6.93e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 - 1.05e8T + 3.93e15T^{2} \) |
| 97 | \( 1 - 1.33e8T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23991704566700621513775258193, −10.23707349564627983299557026718, −8.900172155027740271731114658804, −8.556904270156255616938360144975, −7.33823892919286194228348754753, −6.16273205411821728029180048924, −5.33247126066773250463405560357, −3.48935005914338037166745789940, −2.04938764151784687246258936184, −0.74234132971433029000553316725,
0.65761207285554488508294210113, 1.57134397144234180453777790213, 3.34996259261804965640602455041, 4.07707616471614442107473545605, 6.05172575963088516683970950124, 7.27639591120626528246966737415, 7.987872862224089613563026246575, 9.040995332675689681292609724326, 10.16250318240614796969952235935, 10.92754691958629844089708583336