L(s) = 1 | + (−4.89 + 2.82i)2-s + (−11.1 + 24.5i)3-s + (15.9 − 27.7i)4-s + (−39.5 − 22.8i)5-s + (−14.6 − 152. i)6-s + (−245. − 424. i)7-s + 181. i·8-s + (−478. − 550. i)9-s + 258.·10-s + (−873. + 504. i)11-s + (501. + 703. i)12-s + (466. − 808. i)13-s + (2.40e3 + 1.38e3i)14-s + (1.00e3 − 716. i)15-s + (−512. − 886. i)16-s + 8.09e3i·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.414 + 0.909i)3-s + (0.249 − 0.433i)4-s + (−0.316 − 0.182i)5-s + (−0.0677 − 0.703i)6-s + (−0.714 − 1.23i)7-s + 0.353i·8-s + (−0.655 − 0.754i)9-s + 0.258·10-s + (−0.656 + 0.378i)11-s + (0.290 + 0.407i)12-s + (0.212 − 0.368i)13-s + (0.875 + 0.505i)14-s + (0.297 − 0.212i)15-s + (−0.125 − 0.216i)16-s + 1.64i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.629+0.777i)Λ(7−s)
Λ(s)=(=(18s/2ΓC(s+3)L(s)(−0.629+0.777i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.629+0.777i
|
Analytic conductor: |
4.14097 |
Root analytic conductor: |
2.03493 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :3), −0.629+0.777i)
|
Particular Values
L(27) |
≈ |
0.0318399−0.0667645i |
L(21) |
≈ |
0.0318399−0.0667645i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4.89−2.82i)T |
| 3 | 1+(11.1−24.5i)T |
good | 5 | 1+(39.5+22.8i)T+(7.81e3+1.35e4i)T2 |
| 7 | 1+(245.+424.i)T+(−5.88e4+1.01e5i)T2 |
| 11 | 1+(873.−504.i)T+(8.85e5−1.53e6i)T2 |
| 13 | 1+(−466.+808.i)T+(−2.41e6−4.18e6i)T2 |
| 17 | 1−8.09e3iT−2.41e7T2 |
| 19 | 1+7.72e3T+4.70e7T2 |
| 23 | 1+(1.18e4+6.84e3i)T+(7.40e7+1.28e8i)T2 |
| 29 | 1+(1.96e3−1.13e3i)T+(2.97e8−5.15e8i)T2 |
| 31 | 1+(1.70e4−2.95e4i)T+(−4.43e8−7.68e8i)T2 |
| 37 | 1−9.20e4T+2.56e9T2 |
| 41 | 1+(3.10e4+1.79e4i)T+(2.37e9+4.11e9i)T2 |
| 43 | 1+(−3.45e4−5.98e4i)T+(−3.16e9+5.47e9i)T2 |
| 47 | 1+(−1.32e4+7.62e3i)T+(5.38e9−9.33e9i)T2 |
| 53 | 1+2.36e5iT−2.21e10T2 |
| 59 | 1+(2.21e5+1.28e5i)T+(2.10e10+3.65e10i)T2 |
| 61 | 1+(1.99e4+3.45e4i)T+(−2.57e10+4.46e10i)T2 |
| 67 | 1+(1.60e5−2.77e5i)T+(−4.52e10−7.83e10i)T2 |
| 71 | 1−4.04e5iT−1.28e11T2 |
| 73 | 1−3.93e5T+1.51e11T2 |
| 79 | 1+(4.49e5+7.78e5i)T+(−1.21e11+2.10e11i)T2 |
| 83 | 1+(−1.54e5+8.94e4i)T+(1.63e11−2.83e11i)T2 |
| 89 | 1−8.26e5iT−4.96e11T2 |
| 97 | 1+(3.17e5+5.50e5i)T+(−4.16e11+7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.75939012292823276147856828268, −15.93398224942121299746825444193, −14.69785449599607124064918014746, −12.77161868001907682824024231596, −10.73917007710819511588954036731, −10.04541249643037992735655091509, −8.208698560763989655009045311140, −6.28948962922804108803581722212, −4.11972677104944947336130834320, −0.05974136556983953401149895312,
2.51361554893894988813593547435, 5.99014583345743936276167598944, 7.67850870224326549487971886562, 9.244253685062874394402702866234, 11.20287774412839682591382636092, 12.19402719574377865925444801967, 13.44314677945778322562652032342, 15.54107748701911683921088762785, 16.70336866291349482255243499531, 18.39116073141736199074552062969