sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(18)
sage: chi = H[5]
pari: [g,chi] = znchar(Mod(5,18))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 9 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 6 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 18.d |
Orbit index | = | 4 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{18}(5,\cdot)\) \(\chi_{18}(11,\cdot)\)
Inducing primitive character
Values on generators
\(11\) → \(e\left(\frac{5}{6}\right)\)
Values
-1 | 1 | 5 | 7 | 11 | 13 |
\(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{3})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{18}(5,\cdot)) = \sum_{r\in \Z/18\Z} \chi_{18}(5,r) e\left(\frac{r}{9}\right) = 2.2981333294+1.9283628291i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{18}(5,\cdot),\chi_{18}(1,\cdot)) = \sum_{r\in \Z/18\Z} \chi_{18}(5,r) \chi_{18}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{18}(5,·))
= \sum_{r \in \Z/18\Z}
\chi_{18}(5,r) e\left(\frac{1 r + 2 r^{-1}}{18}\right)
= 1.5+2.5980762114i \)