L(s) = 1 | + (4.89 + 2.82i)2-s + (25.6 + 8.43i)3-s + (15.9 + 27.7i)4-s + (1.59 − 0.922i)5-s + (101. + 113. i)6-s + (6.34 − 10.9i)7-s + 181. i·8-s + (586. + 432. i)9-s + 10.4·10-s + (−49.8 − 28.7i)11-s + (176. + 845. i)12-s + (−1.41e3 − 2.44e3i)13-s + (62.1 − 35.8i)14-s + (48.7 − 10.1i)15-s + (−512. + 886. i)16-s − 7.22e3i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.949 + 0.312i)3-s + (0.249 + 0.433i)4-s + (0.0127 − 0.00737i)5-s + (0.471 + 0.527i)6-s + (0.0184 − 0.0320i)7-s + 0.353i·8-s + (0.804 + 0.593i)9-s + 0.0104·10-s + (−0.0374 − 0.0216i)11-s + (0.102 + 0.489i)12-s + (−0.642 − 1.11i)13-s + (0.0226 − 0.0130i)14-s + (0.0144 − 0.00301i)15-s + (−0.125 + 0.216i)16-s − 1.46i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(0.724−0.689i)Λ(7−s)
Λ(s)=(=(18s/2ΓC(s+3)L(s)(0.724−0.689i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
0.724−0.689i
|
Analytic conductor: |
4.14097 |
Root analytic conductor: |
2.03493 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :3), 0.724−0.689i)
|
Particular Values
L(27) |
≈ |
2.36098+0.944083i |
L(21) |
≈ |
2.36098+0.944083i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.89−2.82i)T |
| 3 | 1+(−25.6−8.43i)T |
good | 5 | 1+(−1.59+0.922i)T+(7.81e3−1.35e4i)T2 |
| 7 | 1+(−6.34+10.9i)T+(−5.88e4−1.01e5i)T2 |
| 11 | 1+(49.8+28.7i)T+(8.85e5+1.53e6i)T2 |
| 13 | 1+(1.41e3+2.44e3i)T+(−2.41e6+4.18e6i)T2 |
| 17 | 1+7.22e3iT−2.41e7T2 |
| 19 | 1+1.06e4T+4.70e7T2 |
| 23 | 1+(−1.15e4+6.68e3i)T+(7.40e7−1.28e8i)T2 |
| 29 | 1+(−3.07e4−1.77e4i)T+(2.97e8+5.15e8i)T2 |
| 31 | 1+(−8.65e3−1.49e4i)T+(−4.43e8+7.68e8i)T2 |
| 37 | 1+6.04e4T+2.56e9T2 |
| 41 | 1+(7.54e4−4.35e4i)T+(2.37e9−4.11e9i)T2 |
| 43 | 1+(−3.79e4+6.57e4i)T+(−3.16e9−5.47e9i)T2 |
| 47 | 1+(−6.18e4−3.57e4i)T+(5.38e9+9.33e9i)T2 |
| 53 | 1−1.47e5iT−2.21e10T2 |
| 59 | 1+(−1.00e5+5.78e4i)T+(2.10e10−3.65e10i)T2 |
| 61 | 1+(−2.01e4+3.48e4i)T+(−2.57e10−4.46e10i)T2 |
| 67 | 1+(−9.08e4−1.57e5i)T+(−4.52e10+7.83e10i)T2 |
| 71 | 1+3.01e5iT−1.28e11T2 |
| 73 | 1+6.12e5T+1.51e11T2 |
| 79 | 1+(−1.71e5+2.97e5i)T+(−1.21e11−2.10e11i)T2 |
| 83 | 1+(1.31e5+7.59e4i)T+(1.63e11+2.83e11i)T2 |
| 89 | 1+1.02e5iT−4.96e11T2 |
| 97 | 1+(−2.47e5+4.29e5i)T+(−4.16e11−7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.29392126391587615726051532915, −15.80532557520805129867838457093, −14.88453984207508013941199817084, −13.72753207912969945392100949253, −12.51116138468688426295457208307, −10.47225791968756840191232791848, −8.729480083695416397887817718889, −7.21167299158374884369317297291, −4.86317093346278517272727683692, −2.89893191550281573396473599301,
2.10492963411147185629111956060, 4.13649598353590919107784415860, 6.65161925255404150004090982820, 8.547007156034662046228693818677, 10.20234104803373087620740184412, 12.07530547442694177273090832266, 13.25550783972698840405812192850, 14.43893579050471927713847743808, 15.39803937252827189608268853609, 17.24658019521784782259658905517