Properties

Label 2-18-9.5-c6-0-4
Degree $2$
Conductor $18$
Sign $0.724 + 0.689i$
Analytic cond. $4.14097$
Root an. cond. $2.03493$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.89 − 2.82i)2-s + (25.6 − 8.43i)3-s + (15.9 − 27.7i)4-s + (1.59 + 0.922i)5-s + (101. − 113. i)6-s + (6.34 + 10.9i)7-s − 181. i·8-s + (586. − 432. i)9-s + 10.4·10-s + (−49.8 + 28.7i)11-s + (176. − 845. i)12-s + (−1.41e3 + 2.44e3i)13-s + (62.1 + 35.8i)14-s + (48.7 + 10.1i)15-s + (−512. − 886. i)16-s + 7.22e3i·17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.949 − 0.312i)3-s + (0.249 − 0.433i)4-s + (0.0127 + 0.00737i)5-s + (0.471 − 0.527i)6-s + (0.0184 + 0.0320i)7-s − 0.353i·8-s + (0.804 − 0.593i)9-s + 0.0104·10-s + (−0.0374 + 0.0216i)11-s + (0.102 − 0.489i)12-s + (−0.642 + 1.11i)13-s + (0.0226 + 0.0130i)14-s + (0.0144 + 0.00301i)15-s + (−0.125 − 0.216i)16-s + 1.46i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.724 + 0.689i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.724 + 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $0.724 + 0.689i$
Analytic conductor: \(4.14097\)
Root analytic conductor: \(2.03493\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :3),\ 0.724 + 0.689i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(2.36098 - 0.944083i\)
\(L(\frac12)\) \(\approx\) \(2.36098 - 0.944083i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4.89 + 2.82i)T \)
3 \( 1 + (-25.6 + 8.43i)T \)
good5 \( 1 + (-1.59 - 0.922i)T + (7.81e3 + 1.35e4i)T^{2} \)
7 \( 1 + (-6.34 - 10.9i)T + (-5.88e4 + 1.01e5i)T^{2} \)
11 \( 1 + (49.8 - 28.7i)T + (8.85e5 - 1.53e6i)T^{2} \)
13 \( 1 + (1.41e3 - 2.44e3i)T + (-2.41e6 - 4.18e6i)T^{2} \)
17 \( 1 - 7.22e3iT - 2.41e7T^{2} \)
19 \( 1 + 1.06e4T + 4.70e7T^{2} \)
23 \( 1 + (-1.15e4 - 6.68e3i)T + (7.40e7 + 1.28e8i)T^{2} \)
29 \( 1 + (-3.07e4 + 1.77e4i)T + (2.97e8 - 5.15e8i)T^{2} \)
31 \( 1 + (-8.65e3 + 1.49e4i)T + (-4.43e8 - 7.68e8i)T^{2} \)
37 \( 1 + 6.04e4T + 2.56e9T^{2} \)
41 \( 1 + (7.54e4 + 4.35e4i)T + (2.37e9 + 4.11e9i)T^{2} \)
43 \( 1 + (-3.79e4 - 6.57e4i)T + (-3.16e9 + 5.47e9i)T^{2} \)
47 \( 1 + (-6.18e4 + 3.57e4i)T + (5.38e9 - 9.33e9i)T^{2} \)
53 \( 1 + 1.47e5iT - 2.21e10T^{2} \)
59 \( 1 + (-1.00e5 - 5.78e4i)T + (2.10e10 + 3.65e10i)T^{2} \)
61 \( 1 + (-2.01e4 - 3.48e4i)T + (-2.57e10 + 4.46e10i)T^{2} \)
67 \( 1 + (-9.08e4 + 1.57e5i)T + (-4.52e10 - 7.83e10i)T^{2} \)
71 \( 1 - 3.01e5iT - 1.28e11T^{2} \)
73 \( 1 + 6.12e5T + 1.51e11T^{2} \)
79 \( 1 + (-1.71e5 - 2.97e5i)T + (-1.21e11 + 2.10e11i)T^{2} \)
83 \( 1 + (1.31e5 - 7.59e4i)T + (1.63e11 - 2.83e11i)T^{2} \)
89 \( 1 - 1.02e5iT - 4.96e11T^{2} \)
97 \( 1 + (-2.47e5 - 4.29e5i)T + (-4.16e11 + 7.21e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.24658019521784782259658905517, −15.39803937252827189608268853609, −14.43893579050471927713847743808, −13.25550783972698840405812192850, −12.07530547442694177273090832266, −10.20234104803373087620740184412, −8.547007156034662046228693818677, −6.65161925255404150004090982820, −4.13649598353590919107784415860, −2.10492963411147185629111956060, 2.89893191550281573396473599301, 4.86317093346278517272727683692, 7.21167299158374884369317297291, 8.729480083695416397887817718889, 10.47225791968756840191232791848, 12.51116138468688426295457208307, 13.72753207912969945392100949253, 14.88453984207508013941199817084, 15.80532557520805129867838457093, 17.29392126391587615726051532915

Graph of the $Z$-function along the critical line