Properties

Label 2-178752-1.1-c1-0-132
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 9-s + 3·11-s − 3·15-s − 17-s − 19-s + 4·25-s − 27-s + 8·29-s − 2·31-s − 3·33-s + 4·37-s + 12·41-s − 43-s + 3·45-s + 9·47-s + 51-s − 6·53-s + 9·55-s + 57-s + 6·59-s − 61-s − 10·67-s + 10·71-s + 11·73-s − 4·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 1/3·9-s + 0.904·11-s − 0.774·15-s − 0.242·17-s − 0.229·19-s + 4/5·25-s − 0.192·27-s + 1.48·29-s − 0.359·31-s − 0.522·33-s + 0.657·37-s + 1.87·41-s − 0.152·43-s + 0.447·45-s + 1.31·47-s + 0.140·51-s − 0.824·53-s + 1.21·55-s + 0.132·57-s + 0.781·59-s − 0.128·61-s − 1.22·67-s + 1.18·71-s + 1.28·73-s − 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.944532721\)
\(L(\frac12)\) \(\approx\) \(3.944532721\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + T + p T^{2} \) 1.17.b
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00742248339072, −12.79416031249157, −12.29184105518398, −11.70463602863687, −11.30583054062324, −10.76037169816844, −10.29954428986946, −9.916768750900867, −9.376130883012749, −8.994520584082577, −8.599953583329459, −7.730699225304449, −7.373900316329071, −6.554335853528354, −6.339840327328094, −5.975089119614430, −5.395205215403735, −4.816967149279466, −4.334744343943496, −3.769184335313694, −2.966275346825013, −2.325494423253852, −1.889899599937571, −1.087737677004449, −0.6718289625227662, 0.6718289625227662, 1.087737677004449, 1.889899599937571, 2.325494423253852, 2.966275346825013, 3.769184335313694, 4.334744343943496, 4.816967149279466, 5.395205215403735, 5.975089119614430, 6.339840327328094, 6.554335853528354, 7.373900316329071, 7.730699225304449, 8.599953583329459, 8.994520584082577, 9.376130883012749, 9.916768750900867, 10.29954428986946, 10.76037169816844, 11.30583054062324, 11.70463602863687, 12.29184105518398, 12.79416031249157, 13.00742248339072

Graph of the $Z$-function along the critical line