Properties

Label 2-17856-1.1-c1-0-38
Degree $2$
Conductor $17856$
Sign $-1$
Analytic cond. $142.580$
Root an. cond. $11.9407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s + 6·11-s + 4·17-s − 3·19-s + 4·25-s − 2·29-s − 31-s + 3·35-s + 2·37-s + 41-s − 6·43-s + 4·47-s − 6·49-s − 12·53-s − 18·55-s − 7·59-s − 4·67-s + 15·71-s + 2·73-s − 6·77-s − 2·79-s − 6·83-s − 12·85-s + 14·89-s + 9·95-s − 7·97-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s + 1.80·11-s + 0.970·17-s − 0.688·19-s + 4/5·25-s − 0.371·29-s − 0.179·31-s + 0.507·35-s + 0.328·37-s + 0.156·41-s − 0.914·43-s + 0.583·47-s − 6/7·49-s − 1.64·53-s − 2.42·55-s − 0.911·59-s − 0.488·67-s + 1.78·71-s + 0.234·73-s − 0.683·77-s − 0.225·79-s − 0.658·83-s − 1.30·85-s + 1.48·89-s + 0.923·95-s − 0.710·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17856\)    =    \(2^{6} \cdot 3^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(142.580\)
Root analytic conductor: \(11.9407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17856,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.06240095165554, −15.57906867017557, −14.87831189277207, −14.61817742572496, −14.04575818679469, −13.30656212354079, −12.51039515259832, −12.23678481148690, −11.71817803424993, −11.15960751611443, −10.70612929468326, −9.674581244441436, −9.453112313422160, −8.658201499092506, −8.094265696044845, −7.582141726819922, −6.827412044250231, −6.428323047051401, −5.693312217865599, −4.705452538597478, −4.170215226501404, −3.550978069865081, −3.149504330590641, −1.867508825077614, −1.025110783592785, 0, 1.025110783592785, 1.867508825077614, 3.149504330590641, 3.550978069865081, 4.170215226501404, 4.705452538597478, 5.693312217865599, 6.428323047051401, 6.827412044250231, 7.582141726819922, 8.094265696044845, 8.658201499092506, 9.453112313422160, 9.674581244441436, 10.70612929468326, 11.15960751611443, 11.71817803424993, 12.23678481148690, 12.51039515259832, 13.30656212354079, 14.04575818679469, 14.61817742572496, 14.87831189277207, 15.57906867017557, 16.06240095165554

Graph of the $Z$-function along the critical line