Properties

Label 2-172800-1.1-c1-0-34
Degree $2$
Conductor $172800$
Sign $-1$
Analytic cond. $1379.81$
Root an. cond. $37.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 5·11-s − 4·13-s − 4·17-s − 8·19-s − 8·23-s − 2·29-s + 7·31-s − 8·37-s + 4·43-s + 4·47-s − 6·49-s − 7·53-s + 12·67-s + 4·71-s + 15·73-s − 5·77-s + 4·79-s − 83-s + 12·89-s + 4·91-s − 7·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.50·11-s − 1.10·13-s − 0.970·17-s − 1.83·19-s − 1.66·23-s − 0.371·29-s + 1.25·31-s − 1.31·37-s + 0.609·43-s + 0.583·47-s − 6/7·49-s − 0.961·53-s + 1.46·67-s + 0.474·71-s + 1.75·73-s − 0.569·77-s + 0.450·79-s − 0.109·83-s + 1.27·89-s + 0.419·91-s − 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(1379.81\)
Root analytic conductor: \(37.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 172800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56846384678781, −12.76534528548369, −12.43978431188782, −12.19267971282113, −11.52125306681450, −11.19381462333241, −10.48577549205376, −10.15631757254786, −9.582510523738604, −9.162146061290098, −8.769035702815503, −8.064162127436707, −7.844050345466812, −6.848362208125931, −6.603298704373767, −6.379370502153876, −5.679106132277466, −4.926886456202386, −4.431754884037323, −3.975582193588934, −3.574193093595963, −2.657119622539284, −2.078563326386052, −1.772280847426272, −0.6674902293729969, 0, 0.6674902293729969, 1.772280847426272, 2.078563326386052, 2.657119622539284, 3.574193093595963, 3.975582193588934, 4.431754884037323, 4.926886456202386, 5.679106132277466, 6.379370502153876, 6.603298704373767, 6.848362208125931, 7.844050345466812, 8.064162127436707, 8.769035702815503, 9.162146061290098, 9.582510523738604, 10.15631757254786, 10.48577549205376, 11.19381462333241, 11.52125306681450, 12.19267971282113, 12.43978431188782, 12.76534528548369, 13.56846384678781

Graph of the $Z$-function along the critical line