L(s) = 1 | + (1.30 + 2.26i)2-s + (1.63 − 0.581i)3-s + (−2.40 + 4.16i)4-s − 2.00·5-s + (3.44 + 2.92i)6-s + (0.257 − 0.445i)7-s − 7.34·8-s + (2.32 − 1.89i)9-s + (−2.61 − 4.52i)10-s + (2.04 − 3.54i)11-s + (−1.50 + 8.20i)12-s + (−1.85 + 3.20i)13-s + 1.34·14-s + (−3.26 + 1.16i)15-s + (−4.77 − 8.26i)16-s + (3.60 − 6.24i)17-s + ⋯ |
L(s) = 1 | + (0.922 + 1.59i)2-s + (0.941 − 0.335i)3-s + (−1.20 + 2.08i)4-s − 0.895·5-s + (1.40 + 1.19i)6-s + (0.0971 − 0.168i)7-s − 2.59·8-s + (0.774 − 0.632i)9-s + (−0.826 − 1.43i)10-s + (0.617 − 1.06i)11-s + (−0.433 + 2.36i)12-s + (−0.513 + 0.889i)13-s + 0.358·14-s + (−0.843 + 0.300i)15-s + (−1.19 − 2.06i)16-s + (0.874 − 1.51i)17-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.322−0.946i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(−0.322−0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.322−0.946i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), −0.322−0.946i)
|
Particular Values
L(1) |
≈ |
1.13024+1.57870i |
L(21) |
≈ |
1.13024+1.57870i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.63+0.581i)T |
| 19 | 1+(−0.559−4.32i)T |
good | 2 | 1+(−1.30−2.26i)T+(−1+1.73i)T2 |
| 5 | 1+2.00T+5T2 |
| 7 | 1+(−0.257+0.445i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.04+3.54i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.85−3.20i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−3.60+6.24i)T+(−8.5−14.7i)T2 |
| 23 | 1+(0.174−0.301i)T+(−11.5−19.9i)T2 |
| 29 | 1+7.54T+29T2 |
| 31 | 1+(0.773+1.33i)T+(−15.5+26.8i)T2 |
| 37 | 1+6.82T+37T2 |
| 41 | 1+2.92T+41T2 |
| 43 | 1+(0.200+0.347i)T+(−21.5+37.2i)T2 |
| 47 | 1−6.16T+47T2 |
| 53 | 1+(−2.35−4.08i)T+(−26.5+45.8i)T2 |
| 59 | 1+4.30T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1+(0.480−0.831i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3.26−5.66i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−1.31+2.28i)T+(−36.5−63.2i)T2 |
| 79 | 1+(3.55+6.16i)T+(−39.5+68.4i)T2 |
| 83 | 1+(8.37−14.5i)T+(−41.5−71.8i)T2 |
| 89 | 1+(5.10+8.84i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−9.64−16.7i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.63598290166328317982194770479, −12.33388863133746939144229819840, −11.68723526206542324716659938669, −9.445474123074456407349670619585, −8.513637892063063148817682054343, −7.56082407912426544499882075301, −7.06368290292929368560309996067, −5.67292024831985270013248481183, −4.17145746361551894541457160633, −3.39232090812837591909328876040,
1.94269311228105392462784841361, 3.39495402424805896350554164810, 4.13488854566990339812366628071, 5.28726544753036826555327950284, 7.41497213647203814424687766371, 8.721567436606042291032963778310, 9.840344546824306101598184633244, 10.51561076345526183009594925748, 11.66368162646693125200332750352, 12.50865762800835943760350577195