Properties

Label 2-162288-1.1-c1-0-132
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 11-s + 2·13-s + 3·17-s + 23-s − 25-s − 7·29-s + 2·31-s − 6·37-s + 6·41-s − 6·43-s − 3·47-s − 12·53-s + 2·55-s − 4·59-s − 10·61-s + 4·65-s + 8·67-s − 13·71-s + 11·73-s + 13·79-s − 4·83-s + 6·85-s + 6·89-s + 10·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.301·11-s + 0.554·13-s + 0.727·17-s + 0.208·23-s − 1/5·25-s − 1.29·29-s + 0.359·31-s − 0.986·37-s + 0.937·41-s − 0.914·43-s − 0.437·47-s − 1.64·53-s + 0.269·55-s − 0.520·59-s − 1.28·61-s + 0.496·65-s + 0.977·67-s − 1.54·71-s + 1.28·73-s + 1.46·79-s − 0.439·83-s + 0.650·85-s + 0.635·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51597740081477, −13.06449783431843, −12.60790395039690, −12.15529288240006, −11.52044946999147, −11.16469774357528, −10.60163338681421, −10.14173106745864, −9.642714724968609, −9.245710839437847, −8.848966805334147, −8.163779580192320, −7.693127086033105, −7.245623966459330, −6.416912021533026, −6.230775818935691, −5.691398405257173, −5.100796289944302, −4.690247573327426, −3.819883980003282, −3.444927590265694, −2.853666151890193, −1.976160734526206, −1.668364013657448, −0.9605245265306303, 0, 0.9605245265306303, 1.668364013657448, 1.976160734526206, 2.853666151890193, 3.444927590265694, 3.819883980003282, 4.690247573327426, 5.100796289944302, 5.691398405257173, 6.230775818935691, 6.416912021533026, 7.245623966459330, 7.693127086033105, 8.163779580192320, 8.848966805334147, 9.245710839437847, 9.642714724968609, 10.14173106745864, 10.60163338681421, 11.16469774357528, 11.52044946999147, 12.15529288240006, 12.60790395039690, 13.06449783431843, 13.51597740081477

Graph of the $Z$-function along the critical line