L(s) = 1 | + (−2.27 − 0.484i)2-s + (−1.66 − 0.491i)3-s + (3.13 + 1.39i)4-s + (−1.74 + 1.39i)5-s + (3.54 + 1.92i)6-s + (−0.0399 + 0.0692i)7-s + (−2.69 − 1.95i)8-s + (2.51 + 1.63i)9-s + (4.65 − 2.33i)10-s + (0.117 + 0.0249i)11-s + (−4.51 − 3.85i)12-s + (0.896 − 0.190i)13-s + (0.124 − 0.138i)14-s + (3.58 − 1.45i)15-s + (0.601 + 0.668i)16-s + (−2.65 − 1.92i)17-s + ⋯ |
L(s) = 1 | + (−1.61 − 0.342i)2-s + (−0.958 − 0.283i)3-s + (1.56 + 0.697i)4-s + (−0.781 + 0.624i)5-s + (1.44 + 0.785i)6-s + (−0.0151 + 0.0261i)7-s + (−0.952 − 0.691i)8-s + (0.838 + 0.544i)9-s + (1.47 − 0.738i)10-s + (0.0353 + 0.00751i)11-s + (−1.30 − 1.11i)12-s + (0.248 − 0.0528i)13-s + (0.0333 − 0.0370i)14-s + (0.926 − 0.376i)15-s + (0.150 + 0.167i)16-s + (−0.643 − 0.467i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.0718+0.997i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.0718+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.0718+0.997i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.0718+0.997i)
|
Particular Values
L(1) |
≈ |
0.182426−0.196043i |
L(21) |
≈ |
0.182426−0.196043i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.66+0.491i)T |
| 5 | 1+(1.74−1.39i)T |
good | 2 | 1+(2.27+0.484i)T+(1.82+0.813i)T2 |
| 7 | 1+(0.0399−0.0692i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.117−0.0249i)T+(10.0+4.47i)T2 |
| 13 | 1+(−0.896+0.190i)T+(11.8−5.28i)T2 |
| 17 | 1+(2.65+1.92i)T+(5.25+16.1i)T2 |
| 19 | 1+(2.09+1.51i)T+(5.87+18.0i)T2 |
| 23 | 1+(−4.80+5.33i)T+(−2.40−22.8i)T2 |
| 29 | 1+(0.650+6.18i)T+(−28.3+6.02i)T2 |
| 31 | 1+(−0.644+6.13i)T+(−30.3−6.44i)T2 |
| 37 | 1+(3.64−11.2i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−6.21+1.32i)T+(37.4−16.6i)T2 |
| 43 | 1+(−6.13+10.6i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.401−3.81i)T+(−45.9+9.77i)T2 |
| 53 | 1+(−6.52+4.73i)T+(16.3−50.4i)T2 |
| 59 | 1+(1.33−0.284i)T+(53.8−23.9i)T2 |
| 61 | 1+(9.81+2.08i)T+(55.7+24.8i)T2 |
| 67 | 1+(−0.885+8.42i)T+(−65.5−13.9i)T2 |
| 71 | 1+(−5.54+4.02i)T+(21.9−67.5i)T2 |
| 73 | 1+(−1.36−4.20i)T+(−59.0+42.9i)T2 |
| 79 | 1+(0.223+2.12i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−2.75+1.22i)T+(55.5−61.6i)T2 |
| 89 | 1+(4.33+13.3i)T+(−72.0+52.3i)T2 |
| 97 | 1+(1.27+12.1i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54508952116823658170718024842, −10.93969799470002079717158806909, −10.30459275355908297124219039775, −9.097672296286504505739664402863, −8.019066687057263545510728266879, −7.15420647912561557503599871188, −6.35009846553633379097506446708, −4.47983331336878564466369264759, −2.47343052114957686509362929410, −0.48998198338046678892037770887,
1.21766169777927125396581284609, 4.04227161965002617208355037170, 5.46328705354978341723206500079, 6.76575527452397781885724668147, 7.57258222774442878992314940247, 8.769223892391147790476814723697, 9.348415101934838874036554042825, 10.71334145010124179753064570172, 11.02520749983099396319188227429, 12.17686165636652656293430888615