Properties

Label 225.106
Modulus $225$
Conductor $225$
Order $15$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,12]))
 
pari: [g,chi] = znchar(Mod(106,225))
 

Basic properties

Modulus: \(225\)
Conductor: \(225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 225.q

\(\chi_{225}(16,\cdot)\) \(\chi_{225}(31,\cdot)\) \(\chi_{225}(61,\cdot)\) \(\chi_{225}(106,\cdot)\) \(\chi_{225}(121,\cdot)\) \(\chi_{225}(166,\cdot)\) \(\chi_{225}(196,\cdot)\) \(\chi_{225}(211,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((101,127)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{2}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 225 }(106, a) \) \(1\)\(1\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 225 }(106,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 225 }(106,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 225 }(106,·),\chi_{ 225 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 225 }(106,·)) \;\) at \(\; a,b = \) e.g. 1,2