Properties

Label 2-15e2-225.121-c1-0-2
Degree $2$
Conductor $225$
Sign $-0.0718 - 0.997i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.27 + 0.484i)2-s + (−1.66 + 0.491i)3-s + (3.13 − 1.39i)4-s + (−1.74 − 1.39i)5-s + (3.54 − 1.92i)6-s + (−0.0399 − 0.0692i)7-s + (−2.69 + 1.95i)8-s + (2.51 − 1.63i)9-s + (4.65 + 2.33i)10-s + (0.117 − 0.0249i)11-s + (−4.51 + 3.85i)12-s + (0.896 + 0.190i)13-s + (0.124 + 0.138i)14-s + (3.58 + 1.45i)15-s + (0.601 − 0.668i)16-s + (−2.65 + 1.92i)17-s + ⋯
L(s)  = 1  + (−1.61 + 0.342i)2-s + (−0.958 + 0.283i)3-s + (1.56 − 0.697i)4-s + (−0.781 − 0.624i)5-s + (1.44 − 0.785i)6-s + (−0.0151 − 0.0261i)7-s + (−0.952 + 0.691i)8-s + (0.838 − 0.544i)9-s + (1.47 + 0.738i)10-s + (0.0353 − 0.00751i)11-s + (−1.30 + 1.11i)12-s + (0.248 + 0.0528i)13-s + (0.0333 + 0.0370i)14-s + (0.926 + 0.376i)15-s + (0.150 − 0.167i)16-s + (−0.643 + 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0718 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0718 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.0718 - 0.997i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ -0.0718 - 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.182426 + 0.196043i\)
\(L(\frac12)\) \(\approx\) \(0.182426 + 0.196043i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.66 - 0.491i)T \)
5 \( 1 + (1.74 + 1.39i)T \)
good2 \( 1 + (2.27 - 0.484i)T + (1.82 - 0.813i)T^{2} \)
7 \( 1 + (0.0399 + 0.0692i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.117 + 0.0249i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-0.896 - 0.190i)T + (11.8 + 5.28i)T^{2} \)
17 \( 1 + (2.65 - 1.92i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (2.09 - 1.51i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-4.80 - 5.33i)T + (-2.40 + 22.8i)T^{2} \)
29 \( 1 + (0.650 - 6.18i)T + (-28.3 - 6.02i)T^{2} \)
31 \( 1 + (-0.644 - 6.13i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (3.64 + 11.2i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-6.21 - 1.32i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (-6.13 - 10.6i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-0.401 + 3.81i)T + (-45.9 - 9.77i)T^{2} \)
53 \( 1 + (-6.52 - 4.73i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (1.33 + 0.284i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (9.81 - 2.08i)T + (55.7 - 24.8i)T^{2} \)
67 \( 1 + (-0.885 - 8.42i)T + (-65.5 + 13.9i)T^{2} \)
71 \( 1 + (-5.54 - 4.02i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-1.36 + 4.20i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (0.223 - 2.12i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (-2.75 - 1.22i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (4.33 - 13.3i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (1.27 - 12.1i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17686165636652656293430888615, −11.02520749983099396319188227429, −10.71334145010124179753064570172, −9.348415101934838874036554042825, −8.769223892391147790476814723697, −7.57258222774442878992314940247, −6.76575527452397781885724668147, −5.46328705354978341723206500079, −4.04227161965002617208355037170, −1.21766169777927125396581284609, 0.48998198338046678892037770887, 2.47343052114957686509362929410, 4.47983331336878564466369264759, 6.35009846553633379097506446708, 7.15420647912561557503599871188, 8.019066687057263545510728266879, 9.097672296286504505739664402863, 10.30459275355908297124219039775, 10.93969799470002079717158806909, 11.54508952116823658170718024842

Graph of the $Z$-function along the critical line