Properties

Label 2-156-1.1-c7-0-5
Degree $2$
Conductor $156$
Sign $1$
Analytic cond. $48.7320$
Root an. cond. $6.98083$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s + 103.·5-s + 1.54e3·7-s + 729·9-s + 2.05e3·11-s + 2.19e3·13-s − 2.78e3·15-s + 1.57e4·17-s + 287.·19-s − 4.17e4·21-s − 4.01e4·23-s − 6.75e4·25-s − 1.96e4·27-s + 8.73e4·29-s − 1.00e5·31-s − 5.53e4·33-s + 1.59e5·35-s + 2.25e5·37-s − 5.93e4·39-s + 2.39e5·41-s − 4.88e5·43-s + 7.51e4·45-s + 1.15e6·47-s + 1.56e6·49-s − 4.24e5·51-s − 1.46e5·53-s + 2.11e5·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.368·5-s + 1.70·7-s + 0.333·9-s + 0.464·11-s + 0.277·13-s − 0.212·15-s + 0.776·17-s + 0.00963·19-s − 0.983·21-s − 0.687·23-s − 0.864·25-s − 0.192·27-s + 0.665·29-s − 0.604·31-s − 0.268·33-s + 0.627·35-s + 0.731·37-s − 0.160·39-s + 0.543·41-s − 0.936·43-s + 0.122·45-s + 1.62·47-s + 1.90·49-s − 0.448·51-s − 0.135·53-s + 0.171·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(156\)    =    \(2^{2} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(48.7320\)
Root analytic conductor: \(6.98083\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 156,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.455583895\)
\(L(\frac12)\) \(\approx\) \(2.455583895\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
13 \( 1 - 2.19e3T \)
good5 \( 1 - 103.T + 7.81e4T^{2} \)
7 \( 1 - 1.54e3T + 8.23e5T^{2} \)
11 \( 1 - 2.05e3T + 1.94e7T^{2} \)
17 \( 1 - 1.57e4T + 4.10e8T^{2} \)
19 \( 1 - 287.T + 8.93e8T^{2} \)
23 \( 1 + 4.01e4T + 3.40e9T^{2} \)
29 \( 1 - 8.73e4T + 1.72e10T^{2} \)
31 \( 1 + 1.00e5T + 2.75e10T^{2} \)
37 \( 1 - 2.25e5T + 9.49e10T^{2} \)
41 \( 1 - 2.39e5T + 1.94e11T^{2} \)
43 \( 1 + 4.88e5T + 2.71e11T^{2} \)
47 \( 1 - 1.15e6T + 5.06e11T^{2} \)
53 \( 1 + 1.46e5T + 1.17e12T^{2} \)
59 \( 1 + 5.43e5T + 2.48e12T^{2} \)
61 \( 1 - 7.02e5T + 3.14e12T^{2} \)
67 \( 1 - 3.24e6T + 6.06e12T^{2} \)
71 \( 1 - 1.07e6T + 9.09e12T^{2} \)
73 \( 1 + 1.53e6T + 1.10e13T^{2} \)
79 \( 1 - 6.54e6T + 1.92e13T^{2} \)
83 \( 1 - 4.85e6T + 2.71e13T^{2} \)
89 \( 1 + 9.33e6T + 4.42e13T^{2} \)
97 \( 1 + 1.27e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57432994145866941956827456227, −10.78672016189597953343552516396, −9.702403660456319654739071496441, −8.398798032232476722320759917511, −7.49550770443543554076067224490, −6.06801674344421169504107702454, −5.14163555191958925715392864308, −4.01688737595682335170003403655, −2.01384654427283587139073159985, −0.983245570027881767846114462054, 0.983245570027881767846114462054, 2.01384654427283587139073159985, 4.01688737595682335170003403655, 5.14163555191958925715392864308, 6.06801674344421169504107702454, 7.49550770443543554076067224490, 8.398798032232476722320759917511, 9.702403660456319654739071496441, 10.78672016189597953343552516396, 11.57432994145866941956827456227

Graph of the $Z$-function along the critical line