Properties

Label 156.8.a.c
Level $156$
Weight $8$
Character orbit 156.a
Self dual yes
Analytic conductor $48.732$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,8,Mod(1,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.7320639755\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11078x - 379248 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + ( - \beta_1 + 175) q^{5} + ( - \beta_{2} + 2 \beta_1 + 240) q^{7} + 729 q^{9} + ( - \beta_{2} - 19 \beta_1 + 2257) q^{11} + 2197 q^{13} + (27 \beta_1 - 4725) q^{15} + ( - 16 \beta_{2} + 32 \beta_1 - 5150) q^{17}+ \cdots + ( - 729 \beta_{2} - 13851 \beta_1 + 1645353) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} + 524 q^{5} + 722 q^{7} + 2187 q^{9} + 6752 q^{11} + 6591 q^{13} - 14148 q^{15} - 15418 q^{17} + 1826 q^{19} - 19494 q^{21} + 16536 q^{23} + 10513 q^{25} - 59049 q^{27} - 151194 q^{29} + 46338 q^{31}+ \cdots + 4922208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 11078x - 379248 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - 29\nu - 7371 ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 89\nu + 7356 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta _1 + 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 29\beta_{2} + 267\beta _1 + 88539 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
119.843
−78.5628
−40.2803
0 −27.0000 0 −59.3952 0 −23.1416 0 729.000 0
1.2 0 −27.0000 0 103.038 0 1545.57 0 729.000 0
1.3 0 −27.0000 0 480.358 0 −800.424 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 156.8.a.c 3
3.b odd 2 1 468.8.a.d 3
4.b odd 2 1 624.8.a.m 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.8.a.c 3 1.a even 1 1 trivial
468.8.a.d 3 3.b odd 2 1
624.8.a.m 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 524T_{5}^{2} + 14844T_{5} + 2939760 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 27)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 524 T^{2} + \cdots + 2939760 \) Copy content Toggle raw display
$7$ \( T^{3} - 722 T^{2} + \cdots - 28628704 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 45830002176 \) Copy content Toggle raw display
$13$ \( (T - 2197)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 3211140134664 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 311539185920 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 87018827710464 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 12\!\cdots\!48 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 516613206809440 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 36\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 46\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 38\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 12\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 28\!\cdots\!20 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 11\!\cdots\!12 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 36\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 96\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 70\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 95\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 41\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 49\!\cdots\!52 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 87\!\cdots\!32 \) Copy content Toggle raw display
show more
show less