Properties

Label 156.8.a.c.1.2
Level $156$
Weight $8$
Character 156.1
Self dual yes
Analytic conductor $48.732$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,8,Mod(1,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-81] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.7320639755\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11078x - 379248 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-78.5628\) of defining polynomial
Character \(\chi\) \(=\) 156.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} +103.038 q^{5} +1545.57 q^{7} +729.000 q^{9} +2051.35 q^{11} +2197.00 q^{13} -2782.01 q^{15} +15739.1 q^{17} +287.921 q^{19} -41730.3 q^{21} -40106.6 q^{23} -67508.3 q^{25} -19683.0 q^{27} +87360.8 q^{29} -100323. q^{31} -55386.6 q^{33} +159251. q^{35} +225233. q^{37} -59319.0 q^{39} +239941. q^{41} -488162. q^{43} +75114.4 q^{45} +1.15547e6 q^{47} +1.56523e6 q^{49} -424954. q^{51} -146943. q^{53} +211367. q^{55} -7773.87 q^{57} -543986. q^{59} +702239. q^{61} +1.12672e6 q^{63} +226374. q^{65} +3.24888e6 q^{67} +1.08288e6 q^{69} +1.07234e6 q^{71} -1.53003e6 q^{73} +1.82272e6 q^{75} +3.17050e6 q^{77} +6.54521e6 q^{79} +531441. q^{81} +4.85528e6 q^{83} +1.62171e6 q^{85} -2.35874e6 q^{87} -9.33838e6 q^{89} +3.39561e6 q^{91} +2.70871e6 q^{93} +29666.7 q^{95} -1.27026e6 q^{97} +1.49544e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 81 q^{3} + 524 q^{5} + 722 q^{7} + 2187 q^{9} + 6752 q^{11} + 6591 q^{13} - 14148 q^{15} - 15418 q^{17} + 1826 q^{19} - 19494 q^{21} + 16536 q^{23} + 10513 q^{25} - 59049 q^{27} - 151194 q^{29} + 46338 q^{31}+ \cdots + 4922208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) 103.038 0.368638 0.184319 0.982866i \(-0.440992\pi\)
0.184319 + 0.982866i \(0.440992\pi\)
\(6\) 0 0
\(7\) 1545.57 1.70312 0.851558 0.524260i \(-0.175658\pi\)
0.851558 + 0.524260i \(0.175658\pi\)
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 2051.35 0.464693 0.232347 0.972633i \(-0.425360\pi\)
0.232347 + 0.972633i \(0.425360\pi\)
\(12\) 0 0
\(13\) 2197.00 0.277350
\(14\) 0 0
\(15\) −2782.01 −0.212834
\(16\) 0 0
\(17\) 15739.1 0.776976 0.388488 0.921454i \(-0.372998\pi\)
0.388488 + 0.921454i \(0.372998\pi\)
\(18\) 0 0
\(19\) 287.921 0.00963022 0.00481511 0.999988i \(-0.498467\pi\)
0.00481511 + 0.999988i \(0.498467\pi\)
\(20\) 0 0
\(21\) −41730.3 −0.983295
\(22\) 0 0
\(23\) −40106.6 −0.687335 −0.343667 0.939091i \(-0.611669\pi\)
−0.343667 + 0.939091i \(0.611669\pi\)
\(24\) 0 0
\(25\) −67508.3 −0.864106
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 87360.8 0.665156 0.332578 0.943076i \(-0.392082\pi\)
0.332578 + 0.943076i \(0.392082\pi\)
\(30\) 0 0
\(31\) −100323. −0.604829 −0.302415 0.953177i \(-0.597793\pi\)
−0.302415 + 0.953177i \(0.597793\pi\)
\(32\) 0 0
\(33\) −55386.6 −0.268291
\(34\) 0 0
\(35\) 159251. 0.627834
\(36\) 0 0
\(37\) 225233. 0.731015 0.365508 0.930808i \(-0.380895\pi\)
0.365508 + 0.930808i \(0.380895\pi\)
\(38\) 0 0
\(39\) −59319.0 −0.160128
\(40\) 0 0
\(41\) 239941. 0.543702 0.271851 0.962339i \(-0.412364\pi\)
0.271851 + 0.962339i \(0.412364\pi\)
\(42\) 0 0
\(43\) −488162. −0.936321 −0.468160 0.883644i \(-0.655083\pi\)
−0.468160 + 0.883644i \(0.655083\pi\)
\(44\) 0 0
\(45\) 75114.4 0.122879
\(46\) 0 0
\(47\) 1.15547e6 1.62337 0.811683 0.584098i \(-0.198552\pi\)
0.811683 + 0.584098i \(0.198552\pi\)
\(48\) 0 0
\(49\) 1.56523e6 1.90061
\(50\) 0 0
\(51\) −424954. −0.448587
\(52\) 0 0
\(53\) −146943. −0.135576 −0.0677882 0.997700i \(-0.521594\pi\)
−0.0677882 + 0.997700i \(0.521594\pi\)
\(54\) 0 0
\(55\) 211367. 0.171304
\(56\) 0 0
\(57\) −7773.87 −0.00556001
\(58\) 0 0
\(59\) −543986. −0.344831 −0.172415 0.985024i \(-0.555157\pi\)
−0.172415 + 0.985024i \(0.555157\pi\)
\(60\) 0 0
\(61\) 702239. 0.396123 0.198062 0.980190i \(-0.436535\pi\)
0.198062 + 0.980190i \(0.436535\pi\)
\(62\) 0 0
\(63\) 1.12672e6 0.567706
\(64\) 0 0
\(65\) 226374. 0.102242
\(66\) 0 0
\(67\) 3.24888e6 1.31969 0.659845 0.751402i \(-0.270622\pi\)
0.659845 + 0.751402i \(0.270622\pi\)
\(68\) 0 0
\(69\) 1.08288e6 0.396833
\(70\) 0 0
\(71\) 1.07234e6 0.355572 0.177786 0.984069i \(-0.443106\pi\)
0.177786 + 0.984069i \(0.443106\pi\)
\(72\) 0 0
\(73\) −1.53003e6 −0.460331 −0.230165 0.973152i \(-0.573927\pi\)
−0.230165 + 0.973152i \(0.573927\pi\)
\(74\) 0 0
\(75\) 1.82272e6 0.498892
\(76\) 0 0
\(77\) 3.17050e6 0.791427
\(78\) 0 0
\(79\) 6.54521e6 1.49358 0.746790 0.665060i \(-0.231594\pi\)
0.746790 + 0.665060i \(0.231594\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 4.85528e6 0.932055 0.466027 0.884770i \(-0.345685\pi\)
0.466027 + 0.884770i \(0.345685\pi\)
\(84\) 0 0
\(85\) 1.62171e6 0.286423
\(86\) 0 0
\(87\) −2.35874e6 −0.384028
\(88\) 0 0
\(89\) −9.33838e6 −1.40413 −0.702063 0.712114i \(-0.747738\pi\)
−0.702063 + 0.712114i \(0.747738\pi\)
\(90\) 0 0
\(91\) 3.39561e6 0.472360
\(92\) 0 0
\(93\) 2.70871e6 0.349198
\(94\) 0 0
\(95\) 29666.7 0.00355007
\(96\) 0 0
\(97\) −1.27026e6 −0.141316 −0.0706580 0.997501i \(-0.522510\pi\)
−0.0706580 + 0.997501i \(0.522510\pi\)
\(98\) 0 0
\(99\) 1.49544e6 0.154898
\(100\) 0 0
\(101\) 1.88833e6 0.182369 0.0911847 0.995834i \(-0.470935\pi\)
0.0911847 + 0.995834i \(0.470935\pi\)
\(102\) 0 0
\(103\) −6.75236e6 −0.608871 −0.304436 0.952533i \(-0.598468\pi\)
−0.304436 + 0.952533i \(0.598468\pi\)
\(104\) 0 0
\(105\) −4.29979e6 −0.362480
\(106\) 0 0
\(107\) 2.15607e7 1.70145 0.850727 0.525607i \(-0.176162\pi\)
0.850727 + 0.525607i \(0.176162\pi\)
\(108\) 0 0
\(109\) −4.31002e6 −0.318777 −0.159388 0.987216i \(-0.550952\pi\)
−0.159388 + 0.987216i \(0.550952\pi\)
\(110\) 0 0
\(111\) −6.08130e6 −0.422052
\(112\) 0 0
\(113\) 1.32045e7 0.860888 0.430444 0.902617i \(-0.358357\pi\)
0.430444 + 0.902617i \(0.358357\pi\)
\(114\) 0 0
\(115\) −4.13249e6 −0.253378
\(116\) 0 0
\(117\) 1.60161e6 0.0924500
\(118\) 0 0
\(119\) 2.43257e7 1.32328
\(120\) 0 0
\(121\) −1.52791e7 −0.784060
\(122\) 0 0
\(123\) −6.47841e6 −0.313906
\(124\) 0 0
\(125\) −1.50057e7 −0.687181
\(126\) 0 0
\(127\) 1.22368e7 0.530095 0.265048 0.964235i \(-0.414612\pi\)
0.265048 + 0.964235i \(0.414612\pi\)
\(128\) 0 0
\(129\) 1.31804e7 0.540585
\(130\) 0 0
\(131\) 4.32414e7 1.68055 0.840273 0.542163i \(-0.182395\pi\)
0.840273 + 0.542163i \(0.182395\pi\)
\(132\) 0 0
\(133\) 445001. 0.0164014
\(134\) 0 0
\(135\) −2.02809e6 −0.0709445
\(136\) 0 0
\(137\) 1.98598e7 0.659862 0.329931 0.944005i \(-0.392975\pi\)
0.329931 + 0.944005i \(0.392975\pi\)
\(138\) 0 0
\(139\) −1.22852e7 −0.387998 −0.193999 0.981002i \(-0.562146\pi\)
−0.193999 + 0.981002i \(0.562146\pi\)
\(140\) 0 0
\(141\) −3.11977e7 −0.937251
\(142\) 0 0
\(143\) 4.50683e6 0.128883
\(144\) 0 0
\(145\) 9.00144e6 0.245202
\(146\) 0 0
\(147\) −4.22612e7 −1.09732
\(148\) 0 0
\(149\) −4.27992e7 −1.05995 −0.529973 0.848014i \(-0.677798\pi\)
−0.529973 + 0.848014i \(0.677798\pi\)
\(150\) 0 0
\(151\) −5.77012e7 −1.36385 −0.681924 0.731423i \(-0.738856\pi\)
−0.681924 + 0.731423i \(0.738856\pi\)
\(152\) 0 0
\(153\) 1.14738e7 0.258992
\(154\) 0 0
\(155\) −1.03370e7 −0.222963
\(156\) 0 0
\(157\) 2.34313e7 0.483223 0.241612 0.970373i \(-0.422324\pi\)
0.241612 + 0.970373i \(0.422324\pi\)
\(158\) 0 0
\(159\) 3.96746e6 0.0782750
\(160\) 0 0
\(161\) −6.19874e7 −1.17061
\(162\) 0 0
\(163\) −1.20613e7 −0.218140 −0.109070 0.994034i \(-0.534787\pi\)
−0.109070 + 0.994034i \(0.534787\pi\)
\(164\) 0 0
\(165\) −5.70690e6 −0.0989023
\(166\) 0 0
\(167\) −9.11187e7 −1.51391 −0.756955 0.653467i \(-0.773314\pi\)
−0.756955 + 0.653467i \(0.773314\pi\)
\(168\) 0 0
\(169\) 4.82681e6 0.0769231
\(170\) 0 0
\(171\) 209895. 0.00321007
\(172\) 0 0
\(173\) −4.60142e7 −0.675663 −0.337832 0.941207i \(-0.609693\pi\)
−0.337832 + 0.941207i \(0.609693\pi\)
\(174\) 0 0
\(175\) −1.04338e8 −1.47167
\(176\) 0 0
\(177\) 1.46876e7 0.199088
\(178\) 0 0
\(179\) 1.24534e8 1.62294 0.811472 0.584391i \(-0.198667\pi\)
0.811472 + 0.584391i \(0.198667\pi\)
\(180\) 0 0
\(181\) 893882. 0.0112048 0.00560241 0.999984i \(-0.498217\pi\)
0.00560241 + 0.999984i \(0.498217\pi\)
\(182\) 0 0
\(183\) −1.89604e7 −0.228702
\(184\) 0 0
\(185\) 2.32075e7 0.269480
\(186\) 0 0
\(187\) 3.22864e7 0.361055
\(188\) 0 0
\(189\) −3.04214e7 −0.327765
\(190\) 0 0
\(191\) −3.30297e7 −0.342995 −0.171497 0.985185i \(-0.554860\pi\)
−0.171497 + 0.985185i \(0.554860\pi\)
\(192\) 0 0
\(193\) −9.03252e7 −0.904395 −0.452198 0.891918i \(-0.649360\pi\)
−0.452198 + 0.891918i \(0.649360\pi\)
\(194\) 0 0
\(195\) −6.11209e6 −0.0590294
\(196\) 0 0
\(197\) 3.80945e7 0.355001 0.177501 0.984121i \(-0.443199\pi\)
0.177501 + 0.984121i \(0.443199\pi\)
\(198\) 0 0
\(199\) −5.69352e7 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(200\) 0 0
\(201\) −8.77198e7 −0.761924
\(202\) 0 0
\(203\) 1.35022e8 1.13284
\(204\) 0 0
\(205\) 2.47229e7 0.200429
\(206\) 0 0
\(207\) −2.92377e7 −0.229112
\(208\) 0 0
\(209\) 590629. 0.00447510
\(210\) 0 0
\(211\) −1.39694e8 −1.02374 −0.511870 0.859063i \(-0.671047\pi\)
−0.511870 + 0.859063i \(0.671047\pi\)
\(212\) 0 0
\(213\) −2.89532e7 −0.205290
\(214\) 0 0
\(215\) −5.02991e7 −0.345164
\(216\) 0 0
\(217\) −1.55055e8 −1.03009
\(218\) 0 0
\(219\) 4.13108e7 0.265772
\(220\) 0 0
\(221\) 3.45787e7 0.215494
\(222\) 0 0
\(223\) 1.07307e8 0.647980 0.323990 0.946060i \(-0.394976\pi\)
0.323990 + 0.946060i \(0.394976\pi\)
\(224\) 0 0
\(225\) −4.92135e7 −0.288035
\(226\) 0 0
\(227\) 2.17396e8 1.23356 0.616782 0.787134i \(-0.288436\pi\)
0.616782 + 0.787134i \(0.288436\pi\)
\(228\) 0 0
\(229\) −2.60127e8 −1.43140 −0.715700 0.698408i \(-0.753892\pi\)
−0.715700 + 0.698408i \(0.753892\pi\)
\(230\) 0 0
\(231\) −8.56036e7 −0.456931
\(232\) 0 0
\(233\) 1.11100e8 0.575400 0.287700 0.957721i \(-0.407109\pi\)
0.287700 + 0.957721i \(0.407109\pi\)
\(234\) 0 0
\(235\) 1.19057e8 0.598435
\(236\) 0 0
\(237\) −1.76721e8 −0.862319
\(238\) 0 0
\(239\) 3.33752e8 1.58136 0.790681 0.612229i \(-0.209727\pi\)
0.790681 + 0.612229i \(0.209727\pi\)
\(240\) 0 0
\(241\) −1.04044e7 −0.0478802 −0.0239401 0.999713i \(-0.507621\pi\)
−0.0239401 + 0.999713i \(0.507621\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) 1.61278e8 0.700636
\(246\) 0 0
\(247\) 632563. 0.00267094
\(248\) 0 0
\(249\) −1.31093e8 −0.538122
\(250\) 0 0
\(251\) 3.80790e8 1.51994 0.759972 0.649956i \(-0.225213\pi\)
0.759972 + 0.649956i \(0.225213\pi\)
\(252\) 0 0
\(253\) −8.22728e7 −0.319400
\(254\) 0 0
\(255\) −4.37863e7 −0.165366
\(256\) 0 0
\(257\) 1.61752e8 0.594406 0.297203 0.954814i \(-0.403946\pi\)
0.297203 + 0.954814i \(0.403946\pi\)
\(258\) 0 0
\(259\) 3.48113e8 1.24500
\(260\) 0 0
\(261\) 6.36860e7 0.221719
\(262\) 0 0
\(263\) 1.92014e8 0.650859 0.325430 0.945566i \(-0.394491\pi\)
0.325430 + 0.945566i \(0.394491\pi\)
\(264\) 0 0
\(265\) −1.51407e7 −0.0499786
\(266\) 0 0
\(267\) 2.52136e8 0.810673
\(268\) 0 0
\(269\) 3.90213e8 1.22227 0.611137 0.791525i \(-0.290712\pi\)
0.611137 + 0.791525i \(0.290712\pi\)
\(270\) 0 0
\(271\) 4.80310e7 0.146598 0.0732992 0.997310i \(-0.476647\pi\)
0.0732992 + 0.997310i \(0.476647\pi\)
\(272\) 0 0
\(273\) −9.16814e7 −0.272717
\(274\) 0 0
\(275\) −1.38483e8 −0.401544
\(276\) 0 0
\(277\) 4.36165e8 1.23302 0.616512 0.787346i \(-0.288545\pi\)
0.616512 + 0.787346i \(0.288545\pi\)
\(278\) 0 0
\(279\) −7.31351e7 −0.201610
\(280\) 0 0
\(281\) 4.10047e8 1.10246 0.551229 0.834354i \(-0.314159\pi\)
0.551229 + 0.834354i \(0.314159\pi\)
\(282\) 0 0
\(283\) −2.90967e8 −0.763118 −0.381559 0.924345i \(-0.624613\pi\)
−0.381559 + 0.924345i \(0.624613\pi\)
\(284\) 0 0
\(285\) −801001. −0.00204963
\(286\) 0 0
\(287\) 3.70845e8 0.925988
\(288\) 0 0
\(289\) −1.62621e8 −0.396309
\(290\) 0 0
\(291\) 3.42970e7 0.0815889
\(292\) 0 0
\(293\) −5.24519e8 −1.21822 −0.609109 0.793087i \(-0.708473\pi\)
−0.609109 + 0.793087i \(0.708473\pi\)
\(294\) 0 0
\(295\) −5.60510e7 −0.127118
\(296\) 0 0
\(297\) −4.03768e7 −0.0894303
\(298\) 0 0
\(299\) −8.81142e7 −0.190632
\(300\) 0 0
\(301\) −7.54487e8 −1.59466
\(302\) 0 0
\(303\) −5.09848e7 −0.105291
\(304\) 0 0
\(305\) 7.23570e7 0.146026
\(306\) 0 0
\(307\) 8.33623e8 1.64432 0.822158 0.569260i \(-0.192770\pi\)
0.822158 + 0.569260i \(0.192770\pi\)
\(308\) 0 0
\(309\) 1.82314e8 0.351532
\(310\) 0 0
\(311\) −1.01024e9 −1.90442 −0.952210 0.305444i \(-0.901195\pi\)
−0.952210 + 0.305444i \(0.901195\pi\)
\(312\) 0 0
\(313\) −2.64485e8 −0.487524 −0.243762 0.969835i \(-0.578382\pi\)
−0.243762 + 0.969835i \(0.578382\pi\)
\(314\) 0 0
\(315\) 1.16094e8 0.209278
\(316\) 0 0
\(317\) −1.85507e8 −0.327079 −0.163539 0.986537i \(-0.552291\pi\)
−0.163539 + 0.986537i \(0.552291\pi\)
\(318\) 0 0
\(319\) 1.79208e8 0.309094
\(320\) 0 0
\(321\) −5.82140e8 −0.982335
\(322\) 0 0
\(323\) 4.53161e6 0.00748244
\(324\) 0 0
\(325\) −1.48316e8 −0.239660
\(326\) 0 0
\(327\) 1.16371e8 0.184046
\(328\) 0 0
\(329\) 1.78586e9 2.76478
\(330\) 0 0
\(331\) 7.44872e7 0.112897 0.0564486 0.998406i \(-0.482022\pi\)
0.0564486 + 0.998406i \(0.482022\pi\)
\(332\) 0 0
\(333\) 1.64195e8 0.243672
\(334\) 0 0
\(335\) 3.34757e8 0.486489
\(336\) 0 0
\(337\) 4.11657e7 0.0585910 0.0292955 0.999571i \(-0.490674\pi\)
0.0292955 + 0.999571i \(0.490674\pi\)
\(338\) 0 0
\(339\) −3.56521e8 −0.497034
\(340\) 0 0
\(341\) −2.05797e8 −0.281060
\(342\) 0 0
\(343\) 1.14633e9 1.53384
\(344\) 0 0
\(345\) 1.11577e8 0.146288
\(346\) 0 0
\(347\) 1.99660e8 0.256530 0.128265 0.991740i \(-0.459059\pi\)
0.128265 + 0.991740i \(0.459059\pi\)
\(348\) 0 0
\(349\) 6.16798e8 0.776702 0.388351 0.921512i \(-0.373045\pi\)
0.388351 + 0.921512i \(0.373045\pi\)
\(350\) 0 0
\(351\) −4.32436e7 −0.0533761
\(352\) 0 0
\(353\) −1.15496e8 −0.139751 −0.0698755 0.997556i \(-0.522260\pi\)
−0.0698755 + 0.997556i \(0.522260\pi\)
\(354\) 0 0
\(355\) 1.10491e8 0.131078
\(356\) 0 0
\(357\) −6.56795e8 −0.763996
\(358\) 0 0
\(359\) −2.07789e8 −0.237024 −0.118512 0.992953i \(-0.537812\pi\)
−0.118512 + 0.992953i \(0.537812\pi\)
\(360\) 0 0
\(361\) −8.93789e8 −0.999907
\(362\) 0 0
\(363\) 4.12536e8 0.452677
\(364\) 0 0
\(365\) −1.57651e8 −0.169696
\(366\) 0 0
\(367\) 2.05412e8 0.216917 0.108459 0.994101i \(-0.465409\pi\)
0.108459 + 0.994101i \(0.465409\pi\)
\(368\) 0 0
\(369\) 1.74917e8 0.181234
\(370\) 0 0
\(371\) −2.27110e8 −0.230902
\(372\) 0 0
\(373\) −1.21011e9 −1.20738 −0.603689 0.797220i \(-0.706303\pi\)
−0.603689 + 0.797220i \(0.706303\pi\)
\(374\) 0 0
\(375\) 4.05154e8 0.396744
\(376\) 0 0
\(377\) 1.91932e8 0.184481
\(378\) 0 0
\(379\) −1.36346e9 −1.28649 −0.643244 0.765661i \(-0.722412\pi\)
−0.643244 + 0.765661i \(0.722412\pi\)
\(380\) 0 0
\(381\) −3.30393e8 −0.306051
\(382\) 0 0
\(383\) 1.63252e9 1.48479 0.742393 0.669964i \(-0.233691\pi\)
0.742393 + 0.669964i \(0.233691\pi\)
\(384\) 0 0
\(385\) 3.26681e8 0.291750
\(386\) 0 0
\(387\) −3.55870e8 −0.312107
\(388\) 0 0
\(389\) −1.94704e9 −1.67707 −0.838533 0.544851i \(-0.816586\pi\)
−0.838533 + 0.544851i \(0.816586\pi\)
\(390\) 0 0
\(391\) −6.31240e8 −0.534042
\(392\) 0 0
\(393\) −1.16752e9 −0.970264
\(394\) 0 0
\(395\) 6.74402e8 0.550591
\(396\) 0 0
\(397\) −6.02131e8 −0.482975 −0.241487 0.970404i \(-0.577635\pi\)
−0.241487 + 0.970404i \(0.577635\pi\)
\(398\) 0 0
\(399\) −1.20150e7 −0.00946934
\(400\) 0 0
\(401\) −2.14476e9 −1.66102 −0.830509 0.557005i \(-0.811950\pi\)
−0.830509 + 0.557005i \(0.811950\pi\)
\(402\) 0 0
\(403\) −2.20409e8 −0.167749
\(404\) 0 0
\(405\) 5.47584e7 0.0409598
\(406\) 0 0
\(407\) 4.62033e8 0.339698
\(408\) 0 0
\(409\) −2.14085e9 −1.54723 −0.773616 0.633655i \(-0.781554\pi\)
−0.773616 + 0.633655i \(0.781554\pi\)
\(410\) 0 0
\(411\) −5.36215e8 −0.380971
\(412\) 0 0
\(413\) −8.40767e8 −0.587287
\(414\) 0 0
\(415\) 5.00277e8 0.343591
\(416\) 0 0
\(417\) 3.31700e8 0.224011
\(418\) 0 0
\(419\) 1.32017e9 0.876762 0.438381 0.898789i \(-0.355552\pi\)
0.438381 + 0.898789i \(0.355552\pi\)
\(420\) 0 0
\(421\) 2.87412e8 0.187723 0.0938616 0.995585i \(-0.470079\pi\)
0.0938616 + 0.995585i \(0.470079\pi\)
\(422\) 0 0
\(423\) 8.42338e8 0.541122
\(424\) 0 0
\(425\) −1.06252e9 −0.671389
\(426\) 0 0
\(427\) 1.08536e9 0.674644
\(428\) 0 0
\(429\) −1.21684e8 −0.0744105
\(430\) 0 0
\(431\) −4.17009e8 −0.250885 −0.125443 0.992101i \(-0.540035\pi\)
−0.125443 + 0.992101i \(0.540035\pi\)
\(432\) 0 0
\(433\) −2.79223e9 −1.65289 −0.826446 0.563017i \(-0.809641\pi\)
−0.826446 + 0.563017i \(0.809641\pi\)
\(434\) 0 0
\(435\) −2.43039e8 −0.141567
\(436\) 0 0
\(437\) −1.15475e7 −0.00661918
\(438\) 0 0
\(439\) 2.80847e9 1.58432 0.792161 0.610312i \(-0.208956\pi\)
0.792161 + 0.610312i \(0.208956\pi\)
\(440\) 0 0
\(441\) 1.14105e9 0.633535
\(442\) 0 0
\(443\) −1.71891e9 −0.939379 −0.469689 0.882832i \(-0.655634\pi\)
−0.469689 + 0.882832i \(0.655634\pi\)
\(444\) 0 0
\(445\) −9.62204e8 −0.517615
\(446\) 0 0
\(447\) 1.15558e9 0.611960
\(448\) 0 0
\(449\) −2.28347e9 −1.19051 −0.595254 0.803538i \(-0.702949\pi\)
−0.595254 + 0.803538i \(0.702949\pi\)
\(450\) 0 0
\(451\) 4.92204e8 0.252655
\(452\) 0 0
\(453\) 1.55793e9 0.787418
\(454\) 0 0
\(455\) 3.49875e8 0.174130
\(456\) 0 0
\(457\) 1.12197e9 0.549888 0.274944 0.961460i \(-0.411341\pi\)
0.274944 + 0.961460i \(0.411341\pi\)
\(458\) 0 0
\(459\) −3.09792e8 −0.149529
\(460\) 0 0
\(461\) −9.98918e8 −0.474872 −0.237436 0.971403i \(-0.576307\pi\)
−0.237436 + 0.971403i \(0.576307\pi\)
\(462\) 0 0
\(463\) −3.42597e9 −1.60417 −0.802085 0.597210i \(-0.796276\pi\)
−0.802085 + 0.597210i \(0.796276\pi\)
\(464\) 0 0
\(465\) 2.79099e8 0.128728
\(466\) 0 0
\(467\) −3.78896e9 −1.72152 −0.860758 0.509015i \(-0.830010\pi\)
−0.860758 + 0.509015i \(0.830010\pi\)
\(468\) 0 0
\(469\) 5.02136e9 2.24759
\(470\) 0 0
\(471\) −6.32646e8 −0.278989
\(472\) 0 0
\(473\) −1.00139e9 −0.435102
\(474\) 0 0
\(475\) −1.94371e7 −0.00832153
\(476\) 0 0
\(477\) −1.07122e8 −0.0451921
\(478\) 0 0
\(479\) −3.72870e9 −1.55019 −0.775093 0.631848i \(-0.782297\pi\)
−0.775093 + 0.631848i \(0.782297\pi\)
\(480\) 0 0
\(481\) 4.94837e8 0.202747
\(482\) 0 0
\(483\) 1.67366e9 0.675853
\(484\) 0 0
\(485\) −1.30885e8 −0.0520945
\(486\) 0 0
\(487\) −1.52815e9 −0.599537 −0.299768 0.954012i \(-0.596909\pi\)
−0.299768 + 0.954012i \(0.596909\pi\)
\(488\) 0 0
\(489\) 3.25654e8 0.125943
\(490\) 0 0
\(491\) 7.43741e7 0.0283555 0.0141777 0.999899i \(-0.495487\pi\)
0.0141777 + 0.999899i \(0.495487\pi\)
\(492\) 0 0
\(493\) 1.37498e9 0.516810
\(494\) 0 0
\(495\) 1.54086e8 0.0571013
\(496\) 0 0
\(497\) 1.65737e9 0.605581
\(498\) 0 0
\(499\) 4.43694e9 1.59857 0.799285 0.600952i \(-0.205212\pi\)
0.799285 + 0.600952i \(0.205212\pi\)
\(500\) 0 0
\(501\) 2.46021e9 0.874056
\(502\) 0 0
\(503\) 3.92561e8 0.137537 0.0687684 0.997633i \(-0.478093\pi\)
0.0687684 + 0.997633i \(0.478093\pi\)
\(504\) 0 0
\(505\) 1.94569e8 0.0672284
\(506\) 0 0
\(507\) −1.30324e8 −0.0444116
\(508\) 0 0
\(509\) −2.20670e9 −0.741704 −0.370852 0.928692i \(-0.620934\pi\)
−0.370852 + 0.928692i \(0.620934\pi\)
\(510\) 0 0
\(511\) −2.36476e9 −0.783997
\(512\) 0 0
\(513\) −5.66715e6 −0.00185334
\(514\) 0 0
\(515\) −6.95747e8 −0.224453
\(516\) 0 0
\(517\) 2.37028e9 0.754367
\(518\) 0 0
\(519\) 1.24238e9 0.390094
\(520\) 0 0
\(521\) 6.06878e9 1.88005 0.940025 0.341106i \(-0.110802\pi\)
0.940025 + 0.341106i \(0.110802\pi\)
\(522\) 0 0
\(523\) 4.87009e9 1.48861 0.744305 0.667840i \(-0.232781\pi\)
0.744305 + 0.667840i \(0.232781\pi\)
\(524\) 0 0
\(525\) 2.81714e9 0.849671
\(526\) 0 0
\(527\) −1.57898e9 −0.469937
\(528\) 0 0
\(529\) −1.79629e9 −0.527571
\(530\) 0 0
\(531\) −3.96566e8 −0.114944
\(532\) 0 0
\(533\) 5.27150e8 0.150796
\(534\) 0 0
\(535\) 2.22157e9 0.627222
\(536\) 0 0
\(537\) −3.36243e9 −0.937007
\(538\) 0 0
\(539\) 3.21084e9 0.883199
\(540\) 0 0
\(541\) 4.82787e9 1.31089 0.655443 0.755244i \(-0.272482\pi\)
0.655443 + 0.755244i \(0.272482\pi\)
\(542\) 0 0
\(543\) −2.41348e7 −0.00646911
\(544\) 0 0
\(545\) −4.44094e8 −0.117513
\(546\) 0 0
\(547\) −2.28441e9 −0.596787 −0.298393 0.954443i \(-0.596451\pi\)
−0.298393 + 0.954443i \(0.596451\pi\)
\(548\) 0 0
\(549\) 5.11932e8 0.132041
\(550\) 0 0
\(551\) 2.51530e7 0.00640560
\(552\) 0 0
\(553\) 1.01160e10 2.54374
\(554\) 0 0
\(555\) −6.26602e8 −0.155585
\(556\) 0 0
\(557\) −3.69402e9 −0.905745 −0.452872 0.891575i \(-0.649601\pi\)
−0.452872 + 0.891575i \(0.649601\pi\)
\(558\) 0 0
\(559\) −1.07249e9 −0.259689
\(560\) 0 0
\(561\) −8.71732e8 −0.208455
\(562\) 0 0
\(563\) −5.92280e9 −1.39877 −0.699387 0.714743i \(-0.746544\pi\)
−0.699387 + 0.714743i \(0.746544\pi\)
\(564\) 0 0
\(565\) 1.36056e9 0.317356
\(566\) 0 0
\(567\) 8.21377e8 0.189235
\(568\) 0 0
\(569\) 6.76988e9 1.54059 0.770297 0.637685i \(-0.220108\pi\)
0.770297 + 0.637685i \(0.220108\pi\)
\(570\) 0 0
\(571\) 1.44850e9 0.325605 0.162802 0.986659i \(-0.447947\pi\)
0.162802 + 0.986659i \(0.447947\pi\)
\(572\) 0 0
\(573\) 8.91801e8 0.198028
\(574\) 0 0
\(575\) 2.70753e9 0.593930
\(576\) 0 0
\(577\) −7.28581e9 −1.57893 −0.789464 0.613796i \(-0.789642\pi\)
−0.789464 + 0.613796i \(0.789642\pi\)
\(578\) 0 0
\(579\) 2.43878e9 0.522153
\(580\) 0 0
\(581\) 7.50416e9 1.58740
\(582\) 0 0
\(583\) −3.01433e8 −0.0630014
\(584\) 0 0
\(585\) 1.65026e8 0.0340806
\(586\) 0 0
\(587\) −1.29361e9 −0.263980 −0.131990 0.991251i \(-0.542137\pi\)
−0.131990 + 0.991251i \(0.542137\pi\)
\(588\) 0 0
\(589\) −2.88850e7 −0.00582464
\(590\) 0 0
\(591\) −1.02855e9 −0.204960
\(592\) 0 0
\(593\) −3.11678e9 −0.613783 −0.306892 0.951744i \(-0.599289\pi\)
−0.306892 + 0.951744i \(0.599289\pi\)
\(594\) 0 0
\(595\) 2.50647e9 0.487812
\(596\) 0 0
\(597\) 1.53725e9 0.295689
\(598\) 0 0
\(599\) −8.17385e8 −0.155393 −0.0776967 0.996977i \(-0.524757\pi\)
−0.0776967 + 0.996977i \(0.524757\pi\)
\(600\) 0 0
\(601\) −6.03603e9 −1.13420 −0.567101 0.823648i \(-0.691935\pi\)
−0.567101 + 0.823648i \(0.691935\pi\)
\(602\) 0 0
\(603\) 2.36843e9 0.439897
\(604\) 0 0
\(605\) −1.57432e9 −0.289035
\(606\) 0 0
\(607\) −4.92208e9 −0.893282 −0.446641 0.894713i \(-0.647380\pi\)
−0.446641 + 0.894713i \(0.647380\pi\)
\(608\) 0 0
\(609\) −3.64559e9 −0.654044
\(610\) 0 0
\(611\) 2.53857e9 0.450241
\(612\) 0 0
\(613\) −4.71965e9 −0.827557 −0.413778 0.910378i \(-0.635791\pi\)
−0.413778 + 0.910378i \(0.635791\pi\)
\(614\) 0 0
\(615\) −6.67519e8 −0.115718
\(616\) 0 0
\(617\) 1.04505e9 0.179117 0.0895586 0.995982i \(-0.471454\pi\)
0.0895586 + 0.995982i \(0.471454\pi\)
\(618\) 0 0
\(619\) −7.05814e8 −0.119612 −0.0598058 0.998210i \(-0.519048\pi\)
−0.0598058 + 0.998210i \(0.519048\pi\)
\(620\) 0 0
\(621\) 7.89418e8 0.132278
\(622\) 0 0
\(623\) −1.44331e10 −2.39139
\(624\) 0 0
\(625\) 3.72793e9 0.610784
\(626\) 0 0
\(627\) −1.59470e7 −0.00258370
\(628\) 0 0
\(629\) 3.54496e9 0.567981
\(630\) 0 0
\(631\) 4.33706e8 0.0687215 0.0343607 0.999409i \(-0.489060\pi\)
0.0343607 + 0.999409i \(0.489060\pi\)
\(632\) 0 0
\(633\) 3.77174e9 0.591056
\(634\) 0 0
\(635\) 1.26085e9 0.195413
\(636\) 0 0
\(637\) 3.43881e9 0.527133
\(638\) 0 0
\(639\) 7.81735e8 0.118524
\(640\) 0 0
\(641\) 4.81614e9 0.722264 0.361132 0.932515i \(-0.382390\pi\)
0.361132 + 0.932515i \(0.382390\pi\)
\(642\) 0 0
\(643\) 1.05505e10 1.56507 0.782535 0.622607i \(-0.213926\pi\)
0.782535 + 0.622607i \(0.213926\pi\)
\(644\) 0 0
\(645\) 1.35807e9 0.199280
\(646\) 0 0
\(647\) −1.02842e10 −1.49282 −0.746410 0.665486i \(-0.768224\pi\)
−0.746410 + 0.665486i \(0.768224\pi\)
\(648\) 0 0
\(649\) −1.11591e9 −0.160241
\(650\) 0 0
\(651\) 4.18649e9 0.594725
\(652\) 0 0
\(653\) −1.06008e10 −1.48984 −0.744922 0.667152i \(-0.767513\pi\)
−0.744922 + 0.667152i \(0.767513\pi\)
\(654\) 0 0
\(655\) 4.45549e9 0.619514
\(656\) 0 0
\(657\) −1.11539e9 −0.153444
\(658\) 0 0
\(659\) −3.01390e9 −0.410232 −0.205116 0.978738i \(-0.565757\pi\)
−0.205116 + 0.978738i \(0.565757\pi\)
\(660\) 0 0
\(661\) 7.70634e9 1.03787 0.518935 0.854814i \(-0.326329\pi\)
0.518935 + 0.854814i \(0.326329\pi\)
\(662\) 0 0
\(663\) −9.33625e8 −0.124416
\(664\) 0 0
\(665\) 4.58519e7 0.00604618
\(666\) 0 0
\(667\) −3.50374e9 −0.457185
\(668\) 0 0
\(669\) −2.89729e9 −0.374111
\(670\) 0 0
\(671\) 1.44054e9 0.184076
\(672\) 0 0
\(673\) −5.70284e9 −0.721171 −0.360586 0.932726i \(-0.617423\pi\)
−0.360586 + 0.932726i \(0.617423\pi\)
\(674\) 0 0
\(675\) 1.32877e9 0.166297
\(676\) 0 0
\(677\) 1.46189e9 0.181073 0.0905366 0.995893i \(-0.471142\pi\)
0.0905366 + 0.995893i \(0.471142\pi\)
\(678\) 0 0
\(679\) −1.96327e9 −0.240678
\(680\) 0 0
\(681\) −5.86970e9 −0.712199
\(682\) 0 0
\(683\) −5.88648e9 −0.706941 −0.353470 0.935446i \(-0.614998\pi\)
−0.353470 + 0.935446i \(0.614998\pi\)
\(684\) 0 0
\(685\) 2.04631e9 0.243250
\(686\) 0 0
\(687\) 7.02343e9 0.826419
\(688\) 0 0
\(689\) −3.22834e8 −0.0376021
\(690\) 0 0
\(691\) −1.46661e10 −1.69099 −0.845495 0.533984i \(-0.820694\pi\)
−0.845495 + 0.533984i \(0.820694\pi\)
\(692\) 0 0
\(693\) 2.31130e9 0.263809
\(694\) 0 0
\(695\) −1.26583e9 −0.143031
\(696\) 0 0
\(697\) 3.77644e9 0.422443
\(698\) 0 0
\(699\) −2.99971e9 −0.332207
\(700\) 0 0
\(701\) 4.05367e9 0.444463 0.222231 0.974994i \(-0.428666\pi\)
0.222231 + 0.974994i \(0.428666\pi\)
\(702\) 0 0
\(703\) 6.48494e7 0.00703984
\(704\) 0 0
\(705\) −3.21454e9 −0.345507
\(706\) 0 0
\(707\) 2.91853e9 0.310596
\(708\) 0 0
\(709\) −2.59089e9 −0.273015 −0.136507 0.990639i \(-0.543588\pi\)
−0.136507 + 0.990639i \(0.543588\pi\)
\(710\) 0 0
\(711\) 4.77146e9 0.497860
\(712\) 0 0
\(713\) 4.02360e9 0.415720
\(714\) 0 0
\(715\) 4.64373e8 0.0475111
\(716\) 0 0
\(717\) −9.01130e9 −0.912999
\(718\) 0 0
\(719\) −5.11555e9 −0.513264 −0.256632 0.966509i \(-0.582613\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(720\) 0 0
\(721\) −1.04362e10 −1.03698
\(722\) 0 0
\(723\) 2.80918e8 0.0276436
\(724\) 0 0
\(725\) −5.89757e9 −0.574765
\(726\) 0 0
\(727\) −1.79156e10 −1.72926 −0.864629 0.502410i \(-0.832447\pi\)
−0.864629 + 0.502410i \(0.832447\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) −7.68321e9 −0.727498
\(732\) 0 0
\(733\) 2.97200e8 0.0278731 0.0139365 0.999903i \(-0.495564\pi\)
0.0139365 + 0.999903i \(0.495564\pi\)
\(734\) 0 0
\(735\) −4.35449e9 −0.404513
\(736\) 0 0
\(737\) 6.66461e9 0.613251
\(738\) 0 0
\(739\) −4.58030e8 −0.0417483 −0.0208741 0.999782i \(-0.506645\pi\)
−0.0208741 + 0.999782i \(0.506645\pi\)
\(740\) 0 0
\(741\) −1.70792e7 −0.00154207
\(742\) 0 0
\(743\) −2.09647e10 −1.87512 −0.937558 0.347830i \(-0.886919\pi\)
−0.937558 + 0.347830i \(0.886919\pi\)
\(744\) 0 0
\(745\) −4.40993e9 −0.390737
\(746\) 0 0
\(747\) 3.53950e9 0.310685
\(748\) 0 0
\(749\) 3.33235e10 2.89778
\(750\) 0 0
\(751\) −2.93646e9 −0.252979 −0.126490 0.991968i \(-0.540371\pi\)
−0.126490 + 0.991968i \(0.540371\pi\)
\(752\) 0 0
\(753\) −1.02813e10 −0.877540
\(754\) 0 0
\(755\) −5.94540e9 −0.502767
\(756\) 0 0
\(757\) −5.51634e9 −0.462184 −0.231092 0.972932i \(-0.574230\pi\)
−0.231092 + 0.972932i \(0.574230\pi\)
\(758\) 0 0
\(759\) 2.22137e9 0.184406
\(760\) 0 0
\(761\) 2.42782e10 1.99696 0.998482 0.0550775i \(-0.0175406\pi\)
0.998482 + 0.0550775i \(0.0175406\pi\)
\(762\) 0 0
\(763\) −6.66142e9 −0.542914
\(764\) 0 0
\(765\) 1.18223e9 0.0954744
\(766\) 0 0
\(767\) −1.19514e9 −0.0956389
\(768\) 0 0
\(769\) −1.06551e10 −0.844916 −0.422458 0.906382i \(-0.638833\pi\)
−0.422458 + 0.906382i \(0.638833\pi\)
\(770\) 0 0
\(771\) −4.36730e9 −0.343180
\(772\) 0 0
\(773\) 1.05446e10 0.821114 0.410557 0.911835i \(-0.365334\pi\)
0.410557 + 0.911835i \(0.365334\pi\)
\(774\) 0 0
\(775\) 6.77260e9 0.522636
\(776\) 0 0
\(777\) −9.39905e9 −0.718804
\(778\) 0 0
\(779\) 6.90841e7 0.00523597
\(780\) 0 0
\(781\) 2.19975e9 0.165232
\(782\) 0 0
\(783\) −1.71952e9 −0.128009
\(784\) 0 0
\(785\) 2.41431e9 0.178135
\(786\) 0 0
\(787\) 1.16175e10 0.849572 0.424786 0.905294i \(-0.360349\pi\)
0.424786 + 0.905294i \(0.360349\pi\)
\(788\) 0 0
\(789\) −5.18437e9 −0.375774
\(790\) 0 0
\(791\) 2.04084e10 1.46619
\(792\) 0 0
\(793\) 1.54282e9 0.109865
\(794\) 0 0
\(795\) 4.08798e8 0.0288552
\(796\) 0 0
\(797\) −3.66787e9 −0.256631 −0.128316 0.991733i \(-0.540957\pi\)
−0.128316 + 0.991733i \(0.540957\pi\)
\(798\) 0 0
\(799\) 1.81860e10 1.26132
\(800\) 0 0
\(801\) −6.80768e9 −0.468042
\(802\) 0 0
\(803\) −3.13863e9 −0.213913
\(804\) 0 0
\(805\) −6.38703e9 −0.431532
\(806\) 0 0
\(807\) −1.05357e10 −0.705680
\(808\) 0 0
\(809\) −9.44725e9 −0.627315 −0.313657 0.949536i \(-0.601554\pi\)
−0.313657 + 0.949536i \(0.601554\pi\)
\(810\) 0 0
\(811\) −5.20312e9 −0.342524 −0.171262 0.985226i \(-0.554784\pi\)
−0.171262 + 0.985226i \(0.554784\pi\)
\(812\) 0 0
\(813\) −1.29684e9 −0.0846386
\(814\) 0 0
\(815\) −1.24276e9 −0.0804150
\(816\) 0 0
\(817\) −1.40552e8 −0.00901697
\(818\) 0 0
\(819\) 2.47540e9 0.157453
\(820\) 0 0
\(821\) 5.16219e9 0.325562 0.162781 0.986662i \(-0.447954\pi\)
0.162781 + 0.986662i \(0.447954\pi\)
\(822\) 0 0
\(823\) −2.49257e9 −0.155865 −0.0779324 0.996959i \(-0.524832\pi\)
−0.0779324 + 0.996959i \(0.524832\pi\)
\(824\) 0 0
\(825\) 3.73905e9 0.231832
\(826\) 0 0
\(827\) −2.54401e8 −0.0156405 −0.00782024 0.999969i \(-0.502489\pi\)
−0.00782024 + 0.999969i \(0.502489\pi\)
\(828\) 0 0
\(829\) −1.01908e10 −0.621251 −0.310626 0.950532i \(-0.600539\pi\)
−0.310626 + 0.950532i \(0.600539\pi\)
\(830\) 0 0
\(831\) −1.17764e10 −0.711886
\(832\) 0 0
\(833\) 2.46352e10 1.47672
\(834\) 0 0
\(835\) −9.38865e9 −0.558085
\(836\) 0 0
\(837\) 1.97465e9 0.116399
\(838\) 0 0
\(839\) 2.17137e10 1.26931 0.634653 0.772797i \(-0.281143\pi\)
0.634653 + 0.772797i \(0.281143\pi\)
\(840\) 0 0
\(841\) −9.61797e9 −0.557568
\(842\) 0 0
\(843\) −1.10713e10 −0.636504
\(844\) 0 0
\(845\) 4.97343e8 0.0283568
\(846\) 0 0
\(847\) −2.36149e10 −1.33535
\(848\) 0 0
\(849\) 7.85612e9 0.440586
\(850\) 0 0
\(851\) −9.03334e9 −0.502452
\(852\) 0 0
\(853\) 2.47699e10 1.36648 0.683240 0.730194i \(-0.260570\pi\)
0.683240 + 0.730194i \(0.260570\pi\)
\(854\) 0 0
\(855\) 2.16270e7 0.00118336
\(856\) 0 0
\(857\) 3.85505e9 0.209217 0.104609 0.994513i \(-0.466641\pi\)
0.104609 + 0.994513i \(0.466641\pi\)
\(858\) 0 0
\(859\) 1.32583e10 0.713694 0.356847 0.934163i \(-0.383852\pi\)
0.356847 + 0.934163i \(0.383852\pi\)
\(860\) 0 0
\(861\) −1.00128e10 −0.534619
\(862\) 0 0
\(863\) 1.14506e10 0.606442 0.303221 0.952920i \(-0.401938\pi\)
0.303221 + 0.952920i \(0.401938\pi\)
\(864\) 0 0
\(865\) −4.74119e9 −0.249076
\(866\) 0 0
\(867\) 4.39076e9 0.228809
\(868\) 0 0
\(869\) 1.34265e10 0.694057
\(870\) 0 0
\(871\) 7.13779e9 0.366016
\(872\) 0 0
\(873\) −9.26020e8 −0.0471054
\(874\) 0 0
\(875\) −2.31923e10 −1.17035
\(876\) 0 0
\(877\) 1.24703e9 0.0624279 0.0312140 0.999513i \(-0.490063\pi\)
0.0312140 + 0.999513i \(0.490063\pi\)
\(878\) 0 0
\(879\) 1.41620e10 0.703338
\(880\) 0 0
\(881\) −9.74816e9 −0.480294 −0.240147 0.970737i \(-0.577196\pi\)
−0.240147 + 0.970737i \(0.577196\pi\)
\(882\) 0 0
\(883\) −1.31328e10 −0.641939 −0.320970 0.947089i \(-0.604009\pi\)
−0.320970 + 0.947089i \(0.604009\pi\)
\(884\) 0 0
\(885\) 1.51338e9 0.0733916
\(886\) 0 0
\(887\) 2.00851e10 0.966364 0.483182 0.875520i \(-0.339481\pi\)
0.483182 + 0.875520i \(0.339481\pi\)
\(888\) 0 0
\(889\) 1.89127e10 0.902814
\(890\) 0 0
\(891\) 1.09017e9 0.0516326
\(892\) 0 0
\(893\) 3.32685e8 0.0156334
\(894\) 0 0
\(895\) 1.28317e10 0.598279
\(896\) 0 0
\(897\) 2.37908e9 0.110062
\(898\) 0 0
\(899\) −8.76426e9 −0.402306
\(900\) 0 0
\(901\) −2.31275e9 −0.105339
\(902\) 0 0
\(903\) 2.03711e10 0.920679
\(904\) 0 0
\(905\) 9.21034e7 0.00413053
\(906\) 0 0
\(907\) 1.14140e10 0.507939 0.253970 0.967212i \(-0.418264\pi\)
0.253970 + 0.967212i \(0.418264\pi\)
\(908\) 0 0
\(909\) 1.37659e9 0.0607898
\(910\) 0 0
\(911\) 2.96830e10 1.30075 0.650375 0.759613i \(-0.274612\pi\)
0.650375 + 0.759613i \(0.274612\pi\)
\(912\) 0 0
\(913\) 9.95991e9 0.433119
\(914\) 0 0
\(915\) −1.95364e9 −0.0843083
\(916\) 0 0
\(917\) 6.68325e10 2.86217
\(918\) 0 0
\(919\) 4.29969e10 1.82740 0.913699 0.406391i \(-0.133213\pi\)
0.913699 + 0.406391i \(0.133213\pi\)
\(920\) 0 0
\(921\) −2.25078e10 −0.949346
\(922\) 0 0
\(923\) 2.35593e9 0.0986180
\(924\) 0 0
\(925\) −1.52051e10 −0.631674
\(926\) 0 0
\(927\) −4.92247e9 −0.202957
\(928\) 0 0
\(929\) −1.89526e10 −0.775557 −0.387779 0.921753i \(-0.626758\pi\)
−0.387779 + 0.921753i \(0.626758\pi\)
\(930\) 0 0
\(931\) 4.50663e8 0.0183032
\(932\) 0 0
\(933\) 2.72765e10 1.09952
\(934\) 0 0
\(935\) 3.32671e9 0.133099
\(936\) 0 0
\(937\) 2.04780e10 0.813204 0.406602 0.913605i \(-0.366714\pi\)
0.406602 + 0.913605i \(0.366714\pi\)
\(938\) 0 0
\(939\) 7.14110e9 0.281472
\(940\) 0 0
\(941\) 3.81380e10 1.49209 0.746045 0.665896i \(-0.231951\pi\)
0.746045 + 0.665896i \(0.231951\pi\)
\(942\) 0 0
\(943\) −9.62321e9 −0.373705
\(944\) 0 0
\(945\) −3.13454e9 −0.120827
\(946\) 0 0
\(947\) 2.14389e10 0.820309 0.410154 0.912016i \(-0.365475\pi\)
0.410154 + 0.912016i \(0.365475\pi\)
\(948\) 0 0
\(949\) −3.36148e9 −0.127673
\(950\) 0 0
\(951\) 5.00868e9 0.188839
\(952\) 0 0
\(953\) −3.74717e10 −1.40242 −0.701210 0.712954i \(-0.747357\pi\)
−0.701210 + 0.712954i \(0.747357\pi\)
\(954\) 0 0
\(955\) −3.40330e9 −0.126441
\(956\) 0 0
\(957\) −4.83861e9 −0.178455
\(958\) 0 0
\(959\) 3.06946e10 1.12382
\(960\) 0 0
\(961\) −1.74480e10 −0.634182
\(962\) 0 0
\(963\) 1.57178e10 0.567152
\(964\) 0 0
\(965\) −9.30689e9 −0.333395
\(966\) 0 0
\(967\) 1.37908e10 0.490452 0.245226 0.969466i \(-0.421138\pi\)
0.245226 + 0.969466i \(0.421138\pi\)
\(968\) 0 0
\(969\) −1.22353e8 −0.00431999
\(970\) 0 0
\(971\) −4.01218e10 −1.40641 −0.703207 0.710985i \(-0.748249\pi\)
−0.703207 + 0.710985i \(0.748249\pi\)
\(972\) 0 0
\(973\) −1.89875e10 −0.660806
\(974\) 0 0
\(975\) 4.00452e9 0.138368
\(976\) 0 0
\(977\) −1.34176e10 −0.460304 −0.230152 0.973155i \(-0.573922\pi\)
−0.230152 + 0.973155i \(0.573922\pi\)
\(978\) 0 0
\(979\) −1.91563e10 −0.652488
\(980\) 0 0
\(981\) −3.14201e9 −0.106259
\(982\) 0 0
\(983\) −1.61694e10 −0.542946 −0.271473 0.962446i \(-0.587511\pi\)
−0.271473 + 0.962446i \(0.587511\pi\)
\(984\) 0 0
\(985\) 3.92516e9 0.130867
\(986\) 0 0
\(987\) −4.82181e10 −1.59625
\(988\) 0 0
\(989\) 1.95785e10 0.643566
\(990\) 0 0
\(991\) −1.22415e10 −0.399556 −0.199778 0.979841i \(-0.564022\pi\)
−0.199778 + 0.979841i \(0.564022\pi\)
\(992\) 0 0
\(993\) −2.01115e9 −0.0651813
\(994\) 0 0
\(995\) −5.86647e9 −0.188797
\(996\) 0 0
\(997\) 8.83907e9 0.282471 0.141235 0.989976i \(-0.454893\pi\)
0.141235 + 0.989976i \(0.454893\pi\)
\(998\) 0 0
\(999\) −4.43327e9 −0.140684
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.8.a.c.1.2 3
3.2 odd 2 468.8.a.d.1.2 3
4.3 odd 2 624.8.a.m.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.8.a.c.1.2 3 1.1 even 1 trivial
468.8.a.d.1.2 3 3.2 odd 2
624.8.a.m.1.2 3 4.3 odd 2