Properties

Label 2-14e2-1.1-c1-0-1
Degree $2$
Conductor $196$
Sign $1$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 2·9-s − 3·11-s + 2·13-s + 3·15-s + 3·17-s − 19-s + 3·23-s + 4·25-s − 5·27-s − 6·29-s − 7·31-s − 3·33-s − 37-s + 2·39-s + 6·41-s − 4·43-s − 6·45-s − 9·47-s + 3·51-s + 3·53-s − 9·55-s − 57-s + 9·59-s − 61-s + 6·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 2/3·9-s − 0.904·11-s + 0.554·13-s + 0.774·15-s + 0.727·17-s − 0.229·19-s + 0.625·23-s + 4/5·25-s − 0.962·27-s − 1.11·29-s − 1.25·31-s − 0.522·33-s − 0.164·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.894·45-s − 1.31·47-s + 0.420·51-s + 0.412·53-s − 1.21·55-s − 0.132·57-s + 1.17·59-s − 0.128·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.567274972\)
\(L(\frac12)\) \(\approx\) \(1.567274972\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92295671713312891956034975071, −11.38571601734354388504430939305, −10.41653304867165853405717544740, −9.465516888415029842549770658404, −8.646784595072977282306137209646, −7.51155146227211557820915407148, −6.02455306491682974275355684196, −5.28434328079604079625535316421, −3.31407617989174490462667281240, −2.04448974040096779312937543400, 2.04448974040096779312937543400, 3.31407617989174490462667281240, 5.28434328079604079625535316421, 6.02455306491682974275355684196, 7.51155146227211557820915407148, 8.646784595072977282306137209646, 9.465516888415029842549770658404, 10.41653304867165853405717544740, 11.38571601734354388504430939305, 12.92295671713312891956034975071

Graph of the $Z$-function along the critical line