Properties

Label 2-14784-1.1-c1-0-38
Degree $2$
Conductor $14784$
Sign $-1$
Analytic cond. $118.050$
Root an. cond. $10.8651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 11-s + 13-s + 15-s + 5·19-s + 21-s − 2·23-s − 4·25-s − 27-s + 29-s − 8·31-s − 33-s + 35-s − 37-s − 39-s + 6·43-s − 45-s − 47-s + 49-s + 2·53-s − 55-s − 5·57-s + 9·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.277·13-s + 0.258·15-s + 1.14·19-s + 0.218·21-s − 0.417·23-s − 4/5·25-s − 0.192·27-s + 0.185·29-s − 1.43·31-s − 0.174·33-s + 0.169·35-s − 0.164·37-s − 0.160·39-s + 0.914·43-s − 0.149·45-s − 0.145·47-s + 1/7·49-s + 0.274·53-s − 0.134·55-s − 0.662·57-s + 1.17·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14784\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(118.050\)
Root analytic conductor: \(10.8651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14784,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.30078389865023, −15.88020958738295, −15.42542160577470, −14.71607159616520, −14.08329967195565, −13.56618738159777, −12.93703106444660, −12.26953777764382, −11.93252351866443, −11.25860340648381, −10.85142976841827, −10.08874380537432, −9.509153289505398, −9.048547662137284, −8.141084989003904, −7.622258928655864, −6.990750724258967, −6.400519701094185, −5.603188409921746, −5.263486193605581, −4.171322040950137, −3.798252371668573, −2.981724605302094, −1.945591165196182, −1.008502636699664, 0, 1.008502636699664, 1.945591165196182, 2.981724605302094, 3.798252371668573, 4.171322040950137, 5.263486193605581, 5.603188409921746, 6.400519701094185, 6.990750724258967, 7.622258928655864, 8.141084989003904, 9.048547662137284, 9.509153289505398, 10.08874380537432, 10.85142976841827, 11.25860340648381, 11.93252351866443, 12.26953777764382, 12.93703106444660, 13.56618738159777, 14.08329967195565, 14.71607159616520, 15.42542160577470, 15.88020958738295, 16.30078389865023

Graph of the $Z$-function along the critical line