Properties

Label 2-13552-1.1-c1-0-26
Degree $2$
Conductor $13552$
Sign $-1$
Analytic cond. $108.213$
Root an. cond. $10.4025$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s − 7-s + 6·9-s + 4·13-s − 3·15-s − 2·17-s − 6·19-s − 3·21-s + 5·23-s − 4·25-s + 9·27-s − 10·29-s − 31-s + 35-s − 5·37-s + 12·39-s + 2·41-s − 8·43-s − 6·45-s − 8·47-s + 49-s − 6·51-s − 6·53-s − 18·57-s − 3·59-s + 2·61-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s − 0.377·7-s + 2·9-s + 1.10·13-s − 0.774·15-s − 0.485·17-s − 1.37·19-s − 0.654·21-s + 1.04·23-s − 4/5·25-s + 1.73·27-s − 1.85·29-s − 0.179·31-s + 0.169·35-s − 0.821·37-s + 1.92·39-s + 0.312·41-s − 1.21·43-s − 0.894·45-s − 1.16·47-s + 1/7·49-s − 0.840·51-s − 0.824·53-s − 2.38·57-s − 0.390·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13552\)    =    \(2^{4} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(108.213\)
Root analytic conductor: \(10.4025\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31708239509841, −15.63005574598782, −15.33397270611150, −14.79886822500248, −14.38024309793918, −13.53177843017387, −13.15571210090187, −12.95801208047788, −12.07626524103951, −11.17859033687482, −10.83392425733800, −9.998496611960822, −9.340965711176791, −8.941137724366696, −8.349067464793441, −7.963592896581777, −7.177829296022279, −6.668397066703540, −5.892147342895214, −4.843347312845342, −4.028984289515527, −3.608976401511123, −3.054671355646993, −2.088595514830599, −1.549179836342091, 0, 1.549179836342091, 2.088595514830599, 3.054671355646993, 3.608976401511123, 4.028984289515527, 4.843347312845342, 5.892147342895214, 6.668397066703540, 7.177829296022279, 7.963592896581777, 8.349067464793441, 8.941137724366696, 9.340965711176791, 9.998496611960822, 10.83392425733800, 11.17859033687482, 12.07626524103951, 12.95801208047788, 13.15571210090187, 13.53177843017387, 14.38024309793918, 14.79886822500248, 15.33397270611150, 15.63005574598782, 16.31708239509841

Graph of the $Z$-function along the critical line