Properties

Label 2-13520-1.1-c1-0-19
Degree $2$
Conductor $13520$
Sign $-1$
Analytic cond. $107.957$
Root an. cond. $10.3902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 7-s − 2·9-s − 3·11-s − 15-s − 3·17-s + 7·19-s − 21-s + 3·23-s + 25-s + 5·27-s + 3·29-s + 4·31-s + 3·33-s + 35-s − 7·37-s − 9·41-s − 11·43-s − 2·45-s − 6·49-s + 3·51-s − 6·53-s − 3·55-s − 7·57-s + 3·59-s + 11·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s − 2/3·9-s − 0.904·11-s − 0.258·15-s − 0.727·17-s + 1.60·19-s − 0.218·21-s + 0.625·23-s + 1/5·25-s + 0.962·27-s + 0.557·29-s + 0.718·31-s + 0.522·33-s + 0.169·35-s − 1.15·37-s − 1.40·41-s − 1.67·43-s − 0.298·45-s − 6/7·49-s + 0.420·51-s − 0.824·53-s − 0.404·55-s − 0.927·57-s + 0.390·59-s + 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13520\)    =    \(2^{4} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(107.957\)
Root analytic conductor: \(10.3902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.36294847207808, −16.09193812689933, −15.37472143482233, −14.86987085264087, −14.09691926451689, −13.67118614464041, −13.24135260543230, −12.44450830936354, −11.84330411795959, −11.38173109667984, −10.88451906088887, −10.15080268907504, −9.787083598457743, −8.877144073857117, −8.362324489001090, −7.824030470227425, −6.811775999698847, −6.577587417740347, −5.562102638385271, −5.080690922383921, −4.848353418673216, −3.487521383705842, −2.926435921812421, −2.066557621072841, −1.085326756946610, 0, 1.085326756946610, 2.066557621072841, 2.926435921812421, 3.487521383705842, 4.848353418673216, 5.080690922383921, 5.562102638385271, 6.577587417740347, 6.811775999698847, 7.824030470227425, 8.362324489001090, 8.877144073857117, 9.787083598457743, 10.15080268907504, 10.88451906088887, 11.38173109667984, 11.84330411795959, 12.44450830936354, 13.24135260543230, 13.67118614464041, 14.09691926451689, 14.86987085264087, 15.37472143482233, 16.09193812689933, 16.36294847207808

Graph of the $Z$-function along the critical line