Properties

Label 2-1274-13.10-c1-0-13
Degree $2$
Conductor $1274$
Sign $-0.938 - 0.344i$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (1.24 + 2.16i)3-s + (0.499 − 0.866i)4-s + 2.78i·5-s + (−2.16 − 1.24i)6-s + 0.999i·8-s + (−1.61 + 2.79i)9-s + (−1.39 − 2.41i)10-s + (3.26 − 1.88i)11-s + 2.49·12-s + (3.40 + 1.19i)13-s + (−6.02 + 3.47i)15-s + (−0.5 − 0.866i)16-s + (−2.50 + 4.34i)17-s − 3.22i·18-s + (2.68 + 1.54i)19-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.720 + 1.24i)3-s + (0.249 − 0.433i)4-s + 1.24i·5-s + (−0.882 − 0.509i)6-s + 0.353i·8-s + (−0.538 + 0.932i)9-s + (−0.440 − 0.763i)10-s + (0.984 − 0.568i)11-s + 0.720·12-s + (0.943 + 0.331i)13-s + (−1.55 + 0.897i)15-s + (−0.125 − 0.216i)16-s + (−0.607 + 1.05i)17-s − 0.761i·18-s + (0.614 + 0.355i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.938 - 0.344i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.938 - 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $-0.938 - 0.344i$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1274} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ -0.938 - 0.344i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.662986340\)
\(L(\frac12)\) \(\approx\) \(1.662986340\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
7 \( 1 \)
13 \( 1 + (-3.40 - 1.19i)T \)
good3 \( 1 + (-1.24 - 2.16i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 - 2.78iT - 5T^{2} \)
11 \( 1 + (-3.26 + 1.88i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (2.50 - 4.34i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.68 - 1.54i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.0487 - 0.0843i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.34 + 2.33i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 8.24iT - 31T^{2} \)
37 \( 1 + (-0.424 + 0.244i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (8.29 - 4.79i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-0.642 + 1.11i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 9.86iT - 47T^{2} \)
53 \( 1 + 10.2T + 53T^{2} \)
59 \( 1 + (4.70 + 2.71i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.31 + 2.27i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-7.32 + 4.22i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.07 + 2.92i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 15.3iT - 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 16.0iT - 83T^{2} \)
89 \( 1 + (-12.4 + 7.16i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.50 - 3.18i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03405528552624323393416790554, −9.098124361514771426459606462929, −8.685283863737396804654248874258, −7.80555399392228042308293744572, −6.57398664483239262522361795309, −6.27115800872477833492566599458, −4.86089884406739349855339294855, −3.59797553513985069999429981780, −3.33323193148390330656319224176, −1.76910217890211652656463168833, 0.855326074848206757252877822359, 1.57171218104208027569937527033, 2.67130664993453861465222417216, 3.90525812465561444882136786180, 5.01178792262399253972320073408, 6.30593436883049496773344447773, 7.10838423536933510846946411728, 7.84122576712399412466187011095, 8.580276558326329926516567346018, 9.148163541422294073039339595112

Graph of the $Z$-function along the critical line