Properties

Label 1274.2.m.g.491.5
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,2,10,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.5
Root \(-2.49593i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.g.589.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(1.24796 + 2.16154i) q^{3} +(0.500000 - 0.866025i) q^{4} +2.78680i q^{5} +(-2.16154 - 1.24796i) q^{6} +1.00000i q^{8} +(-1.61483 + 2.79697i) q^{9} +(-1.39340 - 2.41344i) q^{10} +(3.26564 - 1.88542i) q^{11} +2.49593 q^{12} +(3.40109 + 1.19690i) q^{13} +(-6.02377 + 3.47782i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.50662 + 4.34160i) q^{17} -3.22966i q^{18} +(2.68042 + 1.54754i) q^{19} +(2.41344 + 1.39340i) q^{20} +(-1.88542 + 3.26564i) q^{22} +(0.0487130 + 0.0843734i) q^{23} +(-2.16154 + 1.24796i) q^{24} -2.76624 q^{25} +(-3.54388 + 0.664005i) q^{26} -0.573226 q^{27} +(-1.34957 - 2.33752i) q^{29} +(3.47782 - 6.02377i) q^{30} +8.24042i q^{31} +(0.866025 + 0.500000i) q^{32} +(8.15081 + 4.70587i) q^{33} -5.01324i q^{34} +(1.61483 + 2.79697i) q^{36} +(0.424045 - 0.244823i) q^{37} -3.09508 q^{38} +(1.65731 + 8.84528i) q^{39} -2.78680 q^{40} +(-8.29797 + 4.79084i) q^{41} +(0.642640 - 1.11309i) q^{43} -3.77084i q^{44} +(-7.79459 - 4.50021i) q^{45} +(-0.0843734 - 0.0487130i) q^{46} -9.86141i q^{47} +(1.24796 - 2.16154i) q^{48} +(2.39563 - 1.38312i) q^{50} -12.5127 q^{51} +(2.73709 - 2.34699i) q^{52} -10.2775 q^{53} +(0.496428 - 0.286613i) q^{54} +(5.25428 + 9.10068i) q^{55} +7.72510i q^{57} +(2.33752 + 1.34957i) q^{58} +(-4.70984 - 2.71923i) q^{59} +6.95565i q^{60} +(1.31592 - 2.27924i) q^{61} +(-4.12021 - 7.13641i) q^{62} -1.00000 q^{64} +(-3.33551 + 9.47816i) q^{65} -9.41175 q^{66} +(7.32268 - 4.22775i) q^{67} +(2.50662 + 4.34160i) q^{68} +(-0.121584 + 0.210590i) q^{69} +(-5.07078 - 2.92762i) q^{71} +(-2.79697 - 1.61483i) q^{72} -15.3226i q^{73} +(-0.244823 + 0.424045i) q^{74} +(-3.45217 - 5.97933i) q^{75} +(2.68042 - 1.54754i) q^{76} +(-5.85791 - 6.83158i) q^{78} +11.1089 q^{79} +(2.41344 - 1.39340i) q^{80} +(4.12913 + 7.15186i) q^{81} +(4.79084 - 8.29797i) q^{82} -16.0283i q^{83} +(-12.0992 - 6.98545i) q^{85} +1.28528i q^{86} +(3.36843 - 5.83429i) q^{87} +(1.88542 + 3.26564i) q^{88} +(12.4082 - 7.16387i) q^{89} +9.00042 q^{90} +0.0974260 q^{92} +(-17.8120 + 10.2837i) q^{93} +(4.93071 + 8.54023i) q^{94} +(-4.31268 + 7.46978i) q^{95} +2.49593i q^{96} +(5.50865 + 3.18042i) q^{97} +12.1785i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 10 q^{4} - 16 q^{9} - 4 q^{10} + 6 q^{11} + 4 q^{12} + 6 q^{13} - 12 q^{15} - 10 q^{16} - 10 q^{17} + 24 q^{19} + 2 q^{22} - 36 q^{25} - 28 q^{27} + 2 q^{29} - 2 q^{30} - 12 q^{33} + 16 q^{36}+ \cdots + 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 1.24796 + 2.16154i 0.720513 + 1.24796i 0.960794 + 0.277262i \(0.0894269\pi\)
−0.240282 + 0.970703i \(0.577240\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.78680i 1.24629i 0.782105 + 0.623147i \(0.214146\pi\)
−0.782105 + 0.623147i \(0.785854\pi\)
\(6\) −2.16154 1.24796i −0.882444 0.509479i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.61483 + 2.79697i −0.538277 + 0.932324i
\(10\) −1.39340 2.41344i −0.440631 0.763196i
\(11\) 3.26564 1.88542i 0.984628 0.568475i 0.0809639 0.996717i \(-0.474200\pi\)
0.903664 + 0.428242i \(0.140867\pi\)
\(12\) 2.49593 0.720513
\(13\) 3.40109 + 1.19690i 0.943294 + 0.331959i
\(14\) 0 0
\(15\) −6.02377 + 3.47782i −1.55533 + 0.897970i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.50662 + 4.34160i −0.607945 + 1.05299i 0.383633 + 0.923485i \(0.374673\pi\)
−0.991579 + 0.129506i \(0.958661\pi\)
\(18\) 3.22966i 0.761239i
\(19\) 2.68042 + 1.54754i 0.614930 + 0.355030i 0.774892 0.632093i \(-0.217804\pi\)
−0.159963 + 0.987123i \(0.551137\pi\)
\(20\) 2.41344 + 1.39340i 0.539661 + 0.311573i
\(21\) 0 0
\(22\) −1.88542 + 3.26564i −0.401973 + 0.696237i
\(23\) 0.0487130 + 0.0843734i 0.0101574 + 0.0175931i 0.871059 0.491178i \(-0.163433\pi\)
−0.860902 + 0.508771i \(0.830100\pi\)
\(24\) −2.16154 + 1.24796i −0.441222 + 0.254740i
\(25\) −2.76624 −0.553248
\(26\) −3.54388 + 0.664005i −0.695012 + 0.130222i
\(27\) −0.573226 −0.110317
\(28\) 0 0
\(29\) −1.34957 2.33752i −0.250609 0.434067i 0.713085 0.701078i \(-0.247297\pi\)
−0.963694 + 0.267011i \(0.913964\pi\)
\(30\) 3.47782 6.02377i 0.634961 1.09978i
\(31\) 8.24042i 1.48002i 0.672594 + 0.740011i \(0.265180\pi\)
−0.672594 + 0.740011i \(0.734820\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 8.15081 + 4.70587i 1.41887 + 0.819188i
\(34\) 5.01324i 0.859764i
\(35\) 0 0
\(36\) 1.61483 + 2.79697i 0.269139 + 0.466162i
\(37\) 0.424045 0.244823i 0.0697126 0.0402486i −0.464739 0.885448i \(-0.653852\pi\)
0.534451 + 0.845199i \(0.320518\pi\)
\(38\) −3.09508 −0.502088
\(39\) 1.65731 + 8.84528i 0.265382 + 1.41638i
\(40\) −2.78680 −0.440631
\(41\) −8.29797 + 4.79084i −1.29593 + 0.748203i −0.979698 0.200481i \(-0.935750\pi\)
−0.316228 + 0.948683i \(0.602416\pi\)
\(42\) 0 0
\(43\) 0.642640 1.11309i 0.0980017 0.169744i −0.812856 0.582465i \(-0.802088\pi\)
0.910857 + 0.412721i \(0.135422\pi\)
\(44\) 3.77084i 0.568475i
\(45\) −7.79459 4.50021i −1.16195 0.670852i
\(46\) −0.0843734 0.0487130i −0.0124402 0.00718234i
\(47\) 9.86141i 1.43843i −0.694785 0.719217i \(-0.744501\pi\)
0.694785 0.719217i \(-0.255499\pi\)
\(48\) 1.24796 2.16154i 0.180128 0.311991i
\(49\) 0 0
\(50\) 2.39563 1.38312i 0.338794 0.195603i
\(51\) −12.5127 −1.75213
\(52\) 2.73709 2.34699i 0.379566 0.325468i
\(53\) −10.2775 −1.41172 −0.705859 0.708352i \(-0.749439\pi\)
−0.705859 + 0.708352i \(0.749439\pi\)
\(54\) 0.496428 0.286613i 0.0675553 0.0390031i
\(55\) 5.25428 + 9.10068i 0.708487 + 1.22714i
\(56\) 0 0
\(57\) 7.72510i 1.02321i
\(58\) 2.33752 + 1.34957i 0.306932 + 0.177207i
\(59\) −4.70984 2.71923i −0.613169 0.354014i 0.161035 0.986949i \(-0.448517\pi\)
−0.774205 + 0.632935i \(0.781850\pi\)
\(60\) 6.95565i 0.897970i
\(61\) 1.31592 2.27924i 0.168486 0.291826i −0.769402 0.638765i \(-0.779446\pi\)
0.937888 + 0.346939i \(0.112779\pi\)
\(62\) −4.12021 7.13641i −0.523267 0.906325i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.33551 + 9.47816i −0.413719 + 1.17562i
\(66\) −9.41175 −1.15851
\(67\) 7.32268 4.22775i 0.894608 0.516502i 0.0191607 0.999816i \(-0.493901\pi\)
0.875447 + 0.483315i \(0.160567\pi\)
\(68\) 2.50662 + 4.34160i 0.303973 + 0.526496i
\(69\) −0.121584 + 0.210590i −0.0146370 + 0.0253521i
\(70\) 0 0
\(71\) −5.07078 2.92762i −0.601791 0.347444i 0.167955 0.985795i \(-0.446284\pi\)
−0.769746 + 0.638350i \(0.779617\pi\)
\(72\) −2.79697 1.61483i −0.329626 0.190310i
\(73\) 15.3226i 1.79338i −0.442663 0.896688i \(-0.645966\pi\)
0.442663 0.896688i \(-0.354034\pi\)
\(74\) −0.244823 + 0.424045i −0.0284600 + 0.0492942i
\(75\) −3.45217 5.97933i −0.398622 0.690434i
\(76\) 2.68042 1.54754i 0.307465 0.177515i
\(77\) 0 0
\(78\) −5.85791 6.83158i −0.663278 0.773524i
\(79\) 11.1089 1.24985 0.624923 0.780686i \(-0.285130\pi\)
0.624923 + 0.780686i \(0.285130\pi\)
\(80\) 2.41344 1.39340i 0.269830 0.155787i
\(81\) 4.12913 + 7.15186i 0.458792 + 0.794652i
\(82\) 4.79084 8.29797i 0.529059 0.916358i
\(83\) 16.0283i 1.75933i −0.475594 0.879665i \(-0.657767\pi\)
0.475594 0.879665i \(-0.342233\pi\)
\(84\) 0 0
\(85\) −12.0992 6.98545i −1.31234 0.757678i
\(86\) 1.28528i 0.138595i
\(87\) 3.36843 5.83429i 0.361134 0.625502i
\(88\) 1.88542 + 3.26564i 0.200986 + 0.348119i
\(89\) 12.4082 7.16387i 1.31527 0.759369i 0.332302 0.943173i \(-0.392175\pi\)
0.982963 + 0.183804i \(0.0588412\pi\)
\(90\) 9.00042 0.948727
\(91\) 0 0
\(92\) 0.0974260 0.0101574
\(93\) −17.8120 + 10.2837i −1.84702 + 1.06638i
\(94\) 4.93071 + 8.54023i 0.508563 + 0.880858i
\(95\) −4.31268 + 7.46978i −0.442471 + 0.766383i
\(96\) 2.49593i 0.254740i
\(97\) 5.50865 + 3.18042i 0.559318 + 0.322923i 0.752872 0.658167i \(-0.228668\pi\)
−0.193554 + 0.981090i \(0.562001\pi\)
\(98\) 0 0
\(99\) 12.1785i 1.22399i
\(100\) −1.38312 + 2.39563i −0.138312 + 0.239563i
\(101\) 4.82460 + 8.35645i 0.480065 + 0.831497i 0.999739 0.0228677i \(-0.00727965\pi\)
−0.519673 + 0.854365i \(0.673946\pi\)
\(102\) 10.8363 6.25635i 1.07296 0.619471i
\(103\) −7.74925 −0.763556 −0.381778 0.924254i \(-0.624688\pi\)
−0.381778 + 0.924254i \(0.624688\pi\)
\(104\) −1.19690 + 3.40109i −0.117365 + 0.333505i
\(105\) 0 0
\(106\) 8.90055 5.13873i 0.864498 0.499118i
\(107\) 8.62343 + 14.9362i 0.833658 + 1.44394i 0.895118 + 0.445829i \(0.147091\pi\)
−0.0614597 + 0.998110i \(0.519576\pi\)
\(108\) −0.286613 + 0.496428i −0.0275793 + 0.0477688i
\(109\) 17.3545i 1.66226i −0.556079 0.831129i \(-0.687695\pi\)
0.556079 0.831129i \(-0.312305\pi\)
\(110\) −9.10068 5.25428i −0.867716 0.500976i
\(111\) 1.05839 + 0.611060i 0.100458 + 0.0579992i
\(112\) 0 0
\(113\) −1.23746 + 2.14334i −0.116410 + 0.201628i −0.918343 0.395787i \(-0.870472\pi\)
0.801932 + 0.597415i \(0.203805\pi\)
\(114\) −3.86255 6.69013i −0.361761 0.626588i
\(115\) −0.235131 + 0.135753i −0.0219261 + 0.0126591i
\(116\) −2.69914 −0.250609
\(117\) −8.83988 + 7.57998i −0.817247 + 0.700769i
\(118\) 5.43846 0.500651
\(119\) 0 0
\(120\) −3.47782 6.02377i −0.317481 0.549892i
\(121\) 1.60961 2.78793i 0.146328 0.253448i
\(122\) 2.63184i 0.238275i
\(123\) −20.7111 11.9576i −1.86746 1.07818i
\(124\) 7.13641 + 4.12021i 0.640869 + 0.370006i
\(125\) 6.22504i 0.556785i
\(126\) 0 0
\(127\) −3.06965 5.31678i −0.272387 0.471788i 0.697086 0.716988i \(-0.254480\pi\)
−0.969473 + 0.245200i \(0.921146\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 3.20797 0.282446
\(130\) −1.85045 9.87608i −0.162295 0.866189i
\(131\) −8.81308 −0.770002 −0.385001 0.922916i \(-0.625799\pi\)
−0.385001 + 0.922916i \(0.625799\pi\)
\(132\) 8.15081 4.70587i 0.709437 0.409594i
\(133\) 0 0
\(134\) −4.22775 + 7.32268i −0.365222 + 0.632583i
\(135\) 1.59746i 0.137488i
\(136\) −4.34160 2.50662i −0.372289 0.214941i
\(137\) −4.47276 2.58235i −0.382134 0.220625i 0.296612 0.954998i \(-0.404143\pi\)
−0.678746 + 0.734373i \(0.737476\pi\)
\(138\) 0.243168i 0.0206999i
\(139\) −3.44149 + 5.96083i −0.291903 + 0.505591i −0.974260 0.225428i \(-0.927622\pi\)
0.682357 + 0.731020i \(0.260955\pi\)
\(140\) 0 0
\(141\) 21.3158 12.3067i 1.79512 1.03641i
\(142\) 5.85524 0.491361
\(143\) 13.3634 2.50385i 1.11750 0.209383i
\(144\) 3.22966 0.269139
\(145\) 6.51420 3.76098i 0.540975 0.312332i
\(146\) 7.66130 + 13.2698i 0.634054 + 1.09821i
\(147\) 0 0
\(148\) 0.489645i 0.0402486i
\(149\) −8.20500 4.73716i −0.672180 0.388083i 0.124722 0.992192i \(-0.460196\pi\)
−0.796902 + 0.604109i \(0.793529\pi\)
\(150\) 5.97933 + 3.45217i 0.488210 + 0.281868i
\(151\) 12.8603i 1.04656i 0.852161 + 0.523280i \(0.175292\pi\)
−0.852161 + 0.523280i \(0.824708\pi\)
\(152\) −1.54754 + 2.68042i −0.125522 + 0.217410i
\(153\) −8.09555 14.0219i −0.654486 1.13360i
\(154\) 0 0
\(155\) −22.9644 −1.84454
\(156\) 8.48889 + 2.98737i 0.679655 + 0.239181i
\(157\) −2.00489 −0.160008 −0.0800039 0.996795i \(-0.525493\pi\)
−0.0800039 + 0.996795i \(0.525493\pi\)
\(158\) −9.62057 + 5.55444i −0.765372 + 0.441888i
\(159\) −12.8259 22.2151i −1.01716 1.76178i
\(160\) −1.39340 + 2.41344i −0.110158 + 0.190799i
\(161\) 0 0
\(162\) −7.15186 4.12913i −0.561904 0.324415i
\(163\) −8.88376 5.12904i −0.695830 0.401738i 0.109962 0.993936i \(-0.464927\pi\)
−0.805792 + 0.592198i \(0.798260\pi\)
\(164\) 9.58167i 0.748203i
\(165\) −13.1143 + 22.7147i −1.02095 + 1.76833i
\(166\) 8.01413 + 13.8809i 0.622017 + 1.07737i
\(167\) −2.85452 + 1.64806i −0.220889 + 0.127530i −0.606362 0.795189i \(-0.707372\pi\)
0.385473 + 0.922719i \(0.374038\pi\)
\(168\) 0 0
\(169\) 10.1349 + 8.14151i 0.779606 + 0.626270i
\(170\) 13.9709 1.07152
\(171\) −8.65684 + 4.99803i −0.662005 + 0.382209i
\(172\) −0.642640 1.11309i −0.0490009 0.0848720i
\(173\) 2.72291 4.71621i 0.207019 0.358567i −0.743755 0.668452i \(-0.766957\pi\)
0.950774 + 0.309885i \(0.100291\pi\)
\(174\) 6.73686i 0.510720i
\(175\) 0 0
\(176\) −3.26564 1.88542i −0.246157 0.142119i
\(177\) 13.5740i 1.02029i
\(178\) −7.16387 + 12.4082i −0.536955 + 0.930033i
\(179\) 3.00769 + 5.20948i 0.224806 + 0.389375i 0.956261 0.292514i \(-0.0944920\pi\)
−0.731456 + 0.681889i \(0.761159\pi\)
\(180\) −7.79459 + 4.50021i −0.580975 + 0.335426i
\(181\) −14.2195 −1.05692 −0.528462 0.848957i \(-0.677231\pi\)
−0.528462 + 0.848957i \(0.677231\pi\)
\(182\) 0 0
\(183\) 6.56888 0.485585
\(184\) −0.0843734 + 0.0487130i −0.00622009 + 0.00359117i
\(185\) 0.682271 + 1.18173i 0.0501616 + 0.0868824i
\(186\) 10.2837 17.8120i 0.754041 1.30604i
\(187\) 18.9041i 1.38241i
\(188\) −8.54023 4.93071i −0.622860 0.359609i
\(189\) 0 0
\(190\) 8.62535i 0.625749i
\(191\) −5.89482 + 10.2101i −0.426534 + 0.738778i −0.996562 0.0828466i \(-0.973599\pi\)
0.570028 + 0.821625i \(0.306932\pi\)
\(192\) −1.24796 2.16154i −0.0900641 0.155996i
\(193\) 4.19609 2.42261i 0.302041 0.174384i −0.341318 0.939948i \(-0.610873\pi\)
0.643359 + 0.765564i \(0.277540\pi\)
\(194\) −6.36084 −0.456681
\(195\) −24.6500 + 4.61858i −1.76522 + 0.330744i
\(196\) 0 0
\(197\) 5.26154 3.03775i 0.374869 0.216431i −0.300714 0.953714i \(-0.597225\pi\)
0.675584 + 0.737283i \(0.263892\pi\)
\(198\) −6.08927 10.5469i −0.432746 0.749538i
\(199\) −2.82739 + 4.89718i −0.200428 + 0.347152i −0.948666 0.316278i \(-0.897567\pi\)
0.748238 + 0.663430i \(0.230900\pi\)
\(200\) 2.76624i 0.195603i
\(201\) 18.2769 + 10.5522i 1.28915 + 0.744292i
\(202\) −8.35645 4.82460i −0.587957 0.339457i
\(203\) 0 0
\(204\) −6.25635 + 10.8363i −0.438032 + 0.758694i
\(205\) −13.3511 23.1248i −0.932480 1.61510i
\(206\) 6.71105 3.87462i 0.467581 0.269958i
\(207\) −0.314653 −0.0218699
\(208\) −0.664005 3.54388i −0.0460404 0.245724i
\(209\) 11.6710 0.807303
\(210\) 0 0
\(211\) 6.03845 + 10.4589i 0.415704 + 0.720020i 0.995502 0.0947401i \(-0.0302020\pi\)
−0.579798 + 0.814760i \(0.696869\pi\)
\(212\) −5.13873 + 8.90055i −0.352930 + 0.611292i
\(213\) 14.6143i 1.00135i
\(214\) −14.9362 8.62343i −1.02102 0.589486i
\(215\) 3.10194 + 1.79091i 0.211551 + 0.122139i
\(216\) 0.573226i 0.0390031i
\(217\) 0 0
\(218\) 8.67725 + 15.0294i 0.587697 + 1.01792i
\(219\) 33.1204 19.1221i 2.23807 1.29215i
\(220\) 10.5086 0.708487
\(221\) −13.7217 + 11.7660i −0.923021 + 0.791468i
\(222\) −1.22212 −0.0820233
\(223\) 18.6878 10.7894i 1.25143 0.722514i 0.280037 0.959989i \(-0.409653\pi\)
0.971394 + 0.237475i \(0.0763198\pi\)
\(224\) 0 0
\(225\) 4.46701 7.73709i 0.297801 0.515806i
\(226\) 2.47491i 0.164629i
\(227\) 2.61224 + 1.50818i 0.173381 + 0.100101i 0.584179 0.811625i \(-0.301417\pi\)
−0.410798 + 0.911726i \(0.634750\pi\)
\(228\) 6.69013 + 3.86255i 0.443065 + 0.255803i
\(229\) 12.5934i 0.832196i 0.909320 + 0.416098i \(0.136603\pi\)
−0.909320 + 0.416098i \(0.863397\pi\)
\(230\) 0.135753 0.235131i 0.00895130 0.0155041i
\(231\) 0 0
\(232\) 2.33752 1.34957i 0.153466 0.0886036i
\(233\) 17.2952 1.13305 0.566524 0.824045i \(-0.308288\pi\)
0.566524 + 0.824045i \(0.308288\pi\)
\(234\) 3.86557 10.9844i 0.252700 0.718072i
\(235\) 27.4818 1.79271
\(236\) −4.70984 + 2.71923i −0.306585 + 0.177007i
\(237\) 13.8635 + 24.0123i 0.900530 + 1.55976i
\(238\) 0 0
\(239\) 15.6915i 1.01500i 0.861652 + 0.507500i \(0.169430\pi\)
−0.861652 + 0.507500i \(0.830570\pi\)
\(240\) 6.02377 + 3.47782i 0.388833 + 0.224493i
\(241\) 16.1878 + 9.34601i 1.04275 + 0.602029i 0.920610 0.390484i \(-0.127692\pi\)
0.122136 + 0.992513i \(0.461026\pi\)
\(242\) 3.21923i 0.206940i
\(243\) −11.1659 + 19.3398i −0.716290 + 1.24065i
\(244\) −1.31592 2.27924i −0.0842430 0.145913i
\(245\) 0 0
\(246\) 23.9152 1.52478
\(247\) 7.26410 + 8.47150i 0.462204 + 0.539029i
\(248\) −8.24042 −0.523267
\(249\) 34.6457 20.0027i 2.19558 1.26762i
\(250\) −3.11252 5.39104i −0.196853 0.340960i
\(251\) −4.76111 + 8.24648i −0.300518 + 0.520513i −0.976253 0.216631i \(-0.930493\pi\)
0.675735 + 0.737145i \(0.263826\pi\)
\(252\) 0 0
\(253\) 0.318158 + 0.183689i 0.0200024 + 0.0115484i
\(254\) 5.31678 + 3.06965i 0.333605 + 0.192607i
\(255\) 34.8704i 2.18367i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.50574 2.60801i −0.0939253 0.162683i 0.815234 0.579131i \(-0.196608\pi\)
−0.909160 + 0.416448i \(0.863275\pi\)
\(258\) −2.77818 + 1.60399i −0.172962 + 0.0998597i
\(259\) 0 0
\(260\) 6.54057 + 7.62771i 0.405629 + 0.473051i
\(261\) 8.71731 0.539588
\(262\) 7.63235 4.40654i 0.471528 0.272237i
\(263\) −1.13508 1.96602i −0.0699922 0.121230i 0.828905 0.559389i \(-0.188964\pi\)
−0.898898 + 0.438159i \(0.855631\pi\)
\(264\) −4.70587 + 8.15081i −0.289627 + 0.501648i
\(265\) 28.6412i 1.75942i
\(266\) 0 0
\(267\) 30.9700 + 17.8805i 1.89533 + 1.09427i
\(268\) 8.45550i 0.516502i
\(269\) 1.46983 2.54582i 0.0896172 0.155222i −0.817732 0.575599i \(-0.804769\pi\)
0.907349 + 0.420377i \(0.138102\pi\)
\(270\) 0.798732 + 1.38344i 0.0486093 + 0.0841937i
\(271\) −13.7231 + 7.92301i −0.833616 + 0.481289i −0.855089 0.518481i \(-0.826498\pi\)
0.0214729 + 0.999769i \(0.493164\pi\)
\(272\) 5.01324 0.303973
\(273\) 0 0
\(274\) 5.16470 0.312011
\(275\) −9.03354 + 5.21552i −0.544743 + 0.314508i
\(276\) 0.121584 + 0.210590i 0.00731851 + 0.0126760i
\(277\) 11.1111 19.2451i 0.667604 1.15632i −0.310968 0.950420i \(-0.600653\pi\)
0.978572 0.205904i \(-0.0660134\pi\)
\(278\) 6.88298i 0.412814i
\(279\) −23.0482 13.3069i −1.37986 0.796663i
\(280\) 0 0
\(281\) 9.18876i 0.548156i −0.961708 0.274078i \(-0.911627\pi\)
0.961708 0.274078i \(-0.0883726\pi\)
\(282\) −12.3067 + 21.3158i −0.732853 + 1.26934i
\(283\) 8.52808 + 14.7711i 0.506942 + 0.878049i 0.999968 + 0.00803458i \(0.00255751\pi\)
−0.493026 + 0.870015i \(0.664109\pi\)
\(284\) −5.07078 + 2.92762i −0.300896 + 0.173722i
\(285\) −21.5283 −1.27522
\(286\) −10.3211 + 8.85011i −0.610301 + 0.523318i
\(287\) 0 0
\(288\) −2.79697 + 1.61483i −0.164813 + 0.0951549i
\(289\) −4.06631 7.04306i −0.239195 0.414297i
\(290\) −3.76098 + 6.51420i −0.220852 + 0.382527i
\(291\) 15.8762i 0.930679i
\(292\) −13.2698 7.66130i −0.776554 0.448344i
\(293\) 22.2433 + 12.8422i 1.29947 + 0.750248i 0.980312 0.197455i \(-0.0632675\pi\)
0.319155 + 0.947702i \(0.396601\pi\)
\(294\) 0 0
\(295\) 7.57794 13.1254i 0.441205 0.764189i
\(296\) 0.244823 + 0.424045i 0.0142300 + 0.0246471i
\(297\) −1.87195 + 1.08077i −0.108622 + 0.0627127i
\(298\) 9.47431 0.548832
\(299\) 0.0646913 + 0.345266i 0.00374119 + 0.0199673i
\(300\) −6.90434 −0.398622
\(301\) 0 0
\(302\) −6.43017 11.1374i −0.370015 0.640885i
\(303\) −12.0419 + 20.8571i −0.691786 + 1.19821i
\(304\) 3.09508i 0.177515i
\(305\) 6.35177 + 3.66720i 0.363701 + 0.209983i
\(306\) 14.0219 + 8.09555i 0.801579 + 0.462792i
\(307\) 19.1987i 1.09573i −0.836568 0.547863i \(-0.815442\pi\)
0.836568 0.547863i \(-0.184558\pi\)
\(308\) 0 0
\(309\) −9.67079 16.7503i −0.550152 0.952891i
\(310\) 19.8877 11.4822i 1.12955 0.652144i
\(311\) −6.69185 −0.379460 −0.189730 0.981836i \(-0.560761\pi\)
−0.189730 + 0.981836i \(0.560761\pi\)
\(312\) −8.84528 + 1.65731i −0.500765 + 0.0938266i
\(313\) −8.63310 −0.487972 −0.243986 0.969779i \(-0.578455\pi\)
−0.243986 + 0.969779i \(0.578455\pi\)
\(314\) 1.73629 1.00245i 0.0979844 0.0565713i
\(315\) 0 0
\(316\) 5.55444 9.62057i 0.312462 0.541199i
\(317\) 14.7971i 0.831089i −0.909573 0.415545i \(-0.863591\pi\)
0.909573 0.415545i \(-0.136409\pi\)
\(318\) 22.2151 + 12.8259i 1.24576 + 0.719242i
\(319\) −8.81442 5.08901i −0.493513 0.284930i
\(320\) 2.78680i 0.155787i
\(321\) −21.5235 + 37.2797i −1.20132 + 2.08075i
\(322\) 0 0
\(323\) −13.4376 + 7.75819i −0.747687 + 0.431677i
\(324\) 8.25826 0.458792
\(325\) −9.40824 3.31090i −0.521875 0.183656i
\(326\) 10.2581 0.568143
\(327\) 37.5124 21.6578i 2.07444 1.19768i
\(328\) −4.79084 8.29797i −0.264530 0.458179i
\(329\) 0 0
\(330\) 26.2286i 1.44384i
\(331\) −0.551753 0.318555i −0.0303271 0.0175093i 0.484760 0.874647i \(-0.338907\pi\)
−0.515087 + 0.857138i \(0.672240\pi\)
\(332\) −13.8809 8.01413i −0.761812 0.439833i
\(333\) 1.58139i 0.0866596i
\(334\) 1.64806 2.85452i 0.0901776 0.156192i
\(335\) 11.7819 + 20.4068i 0.643713 + 1.11494i
\(336\) 0 0
\(337\) −16.4026 −0.893508 −0.446754 0.894657i \(-0.647420\pi\)
−0.446754 + 0.894657i \(0.647420\pi\)
\(338\) −12.8478 1.98332i −0.698829 0.107878i
\(339\) −6.17720 −0.335500
\(340\) −12.0992 + 6.98545i −0.656169 + 0.378839i
\(341\) 15.5366 + 26.9103i 0.841356 + 1.45727i
\(342\) 4.99803 8.65684i 0.270263 0.468108i
\(343\) 0 0
\(344\) 1.11309 + 0.642640i 0.0600136 + 0.0346488i
\(345\) −0.586872 0.338830i −0.0315961 0.0182420i
\(346\) 5.44581i 0.292769i
\(347\) 14.9194 25.8411i 0.800915 1.38722i −0.118100 0.993002i \(-0.537680\pi\)
0.919015 0.394223i \(-0.128986\pi\)
\(348\) −3.36843 5.83429i −0.180567 0.312751i
\(349\) 4.10228 2.36845i 0.219590 0.126780i −0.386170 0.922427i \(-0.626202\pi\)
0.605760 + 0.795647i \(0.292869\pi\)
\(350\) 0 0
\(351\) −1.94959 0.686092i −0.104062 0.0366209i
\(352\) 3.77084 0.200986
\(353\) 21.7703 12.5691i 1.15872 0.668985i 0.207720 0.978188i \(-0.433396\pi\)
0.950996 + 0.309204i \(0.100063\pi\)
\(354\) 6.78701 + 11.7554i 0.360725 + 0.624794i
\(355\) 8.15868 14.1312i 0.433018 0.750009i
\(356\) 14.3277i 0.759369i
\(357\) 0 0
\(358\) −5.20948 3.00769i −0.275329 0.158962i
\(359\) 35.0580i 1.85029i 0.379614 + 0.925145i \(0.376057\pi\)
−0.379614 + 0.925145i \(0.623943\pi\)
\(360\) 4.50021 7.79459i 0.237182 0.410811i
\(361\) −4.71025 8.15839i −0.247908 0.429389i
\(362\) 12.3144 7.10973i 0.647231 0.373679i
\(363\) 8.03496 0.421726
\(364\) 0 0
\(365\) 42.7010 2.23507
\(366\) −5.68881 + 3.28444i −0.297359 + 0.171680i
\(367\) −4.00248 6.93250i −0.208928 0.361874i 0.742449 0.669902i \(-0.233664\pi\)
−0.951377 + 0.308029i \(0.900331\pi\)
\(368\) 0.0487130 0.0843734i 0.00253934 0.00439827i
\(369\) 30.9456i 1.61096i
\(370\) −1.18173 0.682271i −0.0614351 0.0354696i
\(371\) 0 0
\(372\) 20.5675i 1.06638i
\(373\) 14.3631 24.8776i 0.743694 1.28812i −0.207108 0.978318i \(-0.566405\pi\)
0.950802 0.309798i \(-0.100261\pi\)
\(374\) −9.45207 16.3715i −0.488755 0.846548i
\(375\) −13.4557 + 7.76863i −0.694848 + 0.401170i
\(376\) 9.86141 0.508563
\(377\) −1.79224 9.56543i −0.0923051 0.492645i
\(378\) 0 0
\(379\) 21.9159 12.6531i 1.12574 0.649947i 0.182881 0.983135i \(-0.441458\pi\)
0.942861 + 0.333188i \(0.108124\pi\)
\(380\) 4.31268 + 7.46978i 0.221236 + 0.383191i
\(381\) 7.66162 13.2703i 0.392517 0.679859i
\(382\) 11.7896i 0.603210i
\(383\) −6.54979 3.78152i −0.334679 0.193227i 0.323238 0.946318i \(-0.395229\pi\)
−0.657916 + 0.753091i \(0.728562\pi\)
\(384\) 2.16154 + 1.24796i 0.110306 + 0.0636849i
\(385\) 0 0
\(386\) −2.42261 + 4.19609i −0.123308 + 0.213575i
\(387\) 2.07551 + 3.59489i 0.105504 + 0.182739i
\(388\) 5.50865 3.18042i 0.279659 0.161461i
\(389\) −6.27513 −0.318162 −0.159081 0.987266i \(-0.550853\pi\)
−0.159081 + 0.987266i \(0.550853\pi\)
\(390\) 19.0382 16.3248i 0.964038 0.826639i
\(391\) −0.488420 −0.0247005
\(392\) 0 0
\(393\) −10.9984 19.0498i −0.554797 0.960936i
\(394\) −3.03775 + 5.26154i −0.153040 + 0.265073i
\(395\) 30.9582i 1.55768i
\(396\) 10.5469 + 6.08927i 0.530003 + 0.305997i
\(397\) −1.46669 0.846796i −0.0736113 0.0424995i 0.462743 0.886493i \(-0.346865\pi\)
−0.536354 + 0.843993i \(0.680199\pi\)
\(398\) 5.65478i 0.283448i
\(399\) 0 0
\(400\) 1.38312 + 2.39563i 0.0691560 + 0.119782i
\(401\) −0.233348 + 0.134724i −0.0116528 + 0.00672777i −0.505815 0.862642i \(-0.668808\pi\)
0.494162 + 0.869370i \(0.335475\pi\)
\(402\) −21.1043 −1.05259
\(403\) −9.86292 + 28.0264i −0.491307 + 1.39610i
\(404\) 9.64919 0.480065
\(405\) −19.9308 + 11.5071i −0.990369 + 0.571790i
\(406\) 0 0
\(407\) 0.923187 1.59901i 0.0457607 0.0792598i
\(408\) 12.5127i 0.619471i
\(409\) 27.7947 + 16.0473i 1.37436 + 0.793487i 0.991473 0.130309i \(-0.0415969\pi\)
0.382886 + 0.923796i \(0.374930\pi\)
\(410\) 23.1248 + 13.3511i 1.14205 + 0.659363i
\(411\) 12.8907i 0.635853i
\(412\) −3.87462 + 6.71105i −0.190889 + 0.330629i
\(413\) 0 0
\(414\) 0.272498 0.157327i 0.0133925 0.00773218i
\(415\) 44.6675 2.19264
\(416\) 2.34699 + 2.73709i 0.115070 + 0.134197i
\(417\) −17.1794 −0.841280
\(418\) −10.1074 + 5.83552i −0.494370 + 0.285425i
\(419\) 3.42135 + 5.92595i 0.167144 + 0.289502i 0.937415 0.348215i \(-0.113212\pi\)
−0.770271 + 0.637717i \(0.779879\pi\)
\(420\) 0 0
\(421\) 13.2165i 0.644132i −0.946717 0.322066i \(-0.895623\pi\)
0.946717 0.322066i \(-0.104377\pi\)
\(422\) −10.4589 6.03845i −0.509131 0.293947i
\(423\) 27.5821 + 15.9245i 1.34109 + 0.774277i
\(424\) 10.2775i 0.499118i
\(425\) 6.93391 12.0099i 0.336344 0.582565i
\(426\) 7.30713 + 12.6563i 0.354032 + 0.613201i
\(427\) 0 0
\(428\) 17.2469 0.833658
\(429\) 22.0892 + 25.7608i 1.06648 + 1.24374i
\(430\) −3.58182 −0.172731
\(431\) 21.1031 12.1839i 1.01650 0.586876i 0.103412 0.994639i \(-0.467024\pi\)
0.913088 + 0.407762i \(0.133691\pi\)
\(432\) 0.286613 + 0.496428i 0.0137897 + 0.0238844i
\(433\) 9.31448 16.1331i 0.447625 0.775310i −0.550606 0.834765i \(-0.685603\pi\)
0.998231 + 0.0594558i \(0.0189365\pi\)
\(434\) 0 0
\(435\) 16.2590 + 9.38713i 0.779559 + 0.450079i
\(436\) −15.0294 8.67725i −0.719779 0.415565i
\(437\) 0.301541i 0.0144247i
\(438\) −19.1221 + 33.1204i −0.913688 + 1.58255i
\(439\) 2.17594 + 3.76884i 0.103852 + 0.179877i 0.913269 0.407358i \(-0.133550\pi\)
−0.809417 + 0.587235i \(0.800217\pi\)
\(440\) −9.10068 + 5.25428i −0.433858 + 0.250488i
\(441\) 0 0
\(442\) 6.00033 17.0505i 0.285407 0.811010i
\(443\) 2.32788 0.110601 0.0553005 0.998470i \(-0.482388\pi\)
0.0553005 + 0.998470i \(0.482388\pi\)
\(444\) 1.05839 0.611060i 0.0502288 0.0289996i
\(445\) 19.9643 + 34.5791i 0.946396 + 1.63921i
\(446\) −10.7894 + 18.6878i −0.510895 + 0.884895i
\(447\) 23.6472i 1.11848i
\(448\) 0 0
\(449\) −17.4514 10.0756i −0.823582 0.475495i 0.0280681 0.999606i \(-0.491064\pi\)
−0.851650 + 0.524111i \(0.824398\pi\)
\(450\) 8.93402i 0.421154i
\(451\) −18.0655 + 31.2903i −0.850670 + 1.47340i
\(452\) 1.23746 + 2.14334i 0.0582050 + 0.100814i
\(453\) −27.7981 + 16.0493i −1.30607 + 0.754060i
\(454\) −3.01636 −0.141565
\(455\) 0 0
\(456\) −7.72510 −0.361761
\(457\) 3.47125 2.00413i 0.162378 0.0937492i −0.416609 0.909086i \(-0.636781\pi\)
0.578987 + 0.815337i \(0.303448\pi\)
\(458\) −6.29670 10.9062i −0.294226 0.509614i
\(459\) 1.43686 2.48872i 0.0670669 0.116163i
\(460\) 0.271506i 0.0126591i
\(461\) 11.6606 + 6.73224i 0.543088 + 0.313552i 0.746329 0.665577i \(-0.231814\pi\)
−0.203242 + 0.979129i \(0.565148\pi\)
\(462\) 0 0
\(463\) 1.46774i 0.0682116i −0.999418 0.0341058i \(-0.989142\pi\)
0.999418 0.0341058i \(-0.0108583\pi\)
\(464\) −1.34957 + 2.33752i −0.0626522 + 0.108517i
\(465\) −28.6587 49.6384i −1.32902 2.30192i
\(466\) −14.9781 + 8.64761i −0.693847 + 0.400593i
\(467\) 10.0177 0.463564 0.231782 0.972768i \(-0.425544\pi\)
0.231782 + 0.972768i \(0.425544\pi\)
\(468\) 2.14451 + 11.4455i 0.0991301 + 0.529071i
\(469\) 0 0
\(470\) −23.7999 + 13.7409i −1.09781 + 0.633819i
\(471\) −2.50203 4.33365i −0.115288 0.199684i
\(472\) 2.71923 4.70984i 0.125163 0.216788i
\(473\) 4.84659i 0.222846i
\(474\) −24.0123 13.8635i −1.10292 0.636771i
\(475\) −7.41467 4.28086i −0.340208 0.196419i
\(476\) 0 0
\(477\) 16.5964 28.7458i 0.759896 1.31618i
\(478\) −7.84576 13.5893i −0.358857 0.621558i
\(479\) −7.74369 + 4.47082i −0.353818 + 0.204277i −0.666366 0.745625i \(-0.732151\pi\)
0.312547 + 0.949902i \(0.398818\pi\)
\(480\) −6.95565 −0.317481
\(481\) 1.73524 0.325127i 0.0791203 0.0148245i
\(482\) −18.6920 −0.851398
\(483\) 0 0
\(484\) −1.60961 2.78793i −0.0731642 0.126724i
\(485\) −8.86318 + 15.3515i −0.402456 + 0.697075i
\(486\) 22.3317i 1.01299i
\(487\) −18.4298 10.6404i −0.835133 0.482164i 0.0204740 0.999790i \(-0.493482\pi\)
−0.855607 + 0.517626i \(0.826816\pi\)
\(488\) 2.27924 + 1.31592i 0.103176 + 0.0595688i
\(489\) 25.6035i 1.15783i
\(490\) 0 0
\(491\) 3.45976 + 5.99247i 0.156137 + 0.270437i 0.933472 0.358649i \(-0.116763\pi\)
−0.777336 + 0.629086i \(0.783429\pi\)
\(492\) −20.7111 + 11.9576i −0.933731 + 0.539090i
\(493\) 13.5314 0.609426
\(494\) −10.5267 3.70449i −0.473616 0.166673i
\(495\) −33.9391 −1.52545
\(496\) 7.13641 4.12021i 0.320434 0.185003i
\(497\) 0 0
\(498\) −20.0027 + 34.6457i −0.896343 + 1.55251i
\(499\) 20.3813i 0.912394i −0.889879 0.456197i \(-0.849211\pi\)
0.889879 0.456197i \(-0.150789\pi\)
\(500\) 5.39104 + 3.11252i 0.241095 + 0.139196i
\(501\) −7.12467 4.11343i −0.318307 0.183775i
\(502\) 9.52221i 0.424997i
\(503\) −19.0046 + 32.9170i −0.847375 + 1.46770i 0.0361679 + 0.999346i \(0.488485\pi\)
−0.883543 + 0.468351i \(0.844848\pi\)
\(504\) 0 0
\(505\) −23.2877 + 13.4452i −1.03629 + 0.598302i
\(506\) −0.367378 −0.0163319
\(507\) −4.95021 + 32.0673i −0.219847 + 1.42416i
\(508\) −6.13929 −0.272387
\(509\) −1.12000 + 0.646632i −0.0496431 + 0.0286615i −0.524616 0.851339i \(-0.675791\pi\)
0.474973 + 0.880000i \(0.342458\pi\)
\(510\) 17.4352 + 30.1986i 0.772043 + 1.33722i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −1.53648 0.887089i −0.0678374 0.0391659i
\(514\) 2.60801 + 1.50574i 0.115034 + 0.0664152i
\(515\) 21.5956i 0.951615i
\(516\) 1.60399 2.77818i 0.0706115 0.122303i
\(517\) −18.5929 32.2038i −0.817715 1.41632i
\(518\) 0 0
\(519\) 13.5924 0.596638
\(520\) −9.47816 3.33551i −0.415645 0.146272i
\(521\) −33.4103 −1.46373 −0.731865 0.681449i \(-0.761350\pi\)
−0.731865 + 0.681449i \(0.761350\pi\)
\(522\) −7.54942 + 4.35866i −0.330429 + 0.190773i
\(523\) 21.2753 + 36.8499i 0.930303 + 1.61133i 0.782803 + 0.622270i \(0.213789\pi\)
0.147500 + 0.989062i \(0.452877\pi\)
\(524\) −4.40654 + 7.63235i −0.192501 + 0.333421i
\(525\) 0 0
\(526\) 1.96602 + 1.13508i 0.0857226 + 0.0494920i
\(527\) −35.7766 20.6556i −1.55845 0.899773i
\(528\) 9.41175i 0.409594i
\(529\) 11.4953 19.9104i 0.499794 0.865668i
\(530\) 14.3206 + 24.8040i 0.622048 + 1.07742i
\(531\) 15.2112 8.78220i 0.660110 0.381115i
\(532\) 0 0
\(533\) −33.9563 + 6.36227i −1.47081 + 0.275581i
\(534\) −35.7610 −1.54753
\(535\) −41.6242 + 24.0317i −1.79957 + 1.03898i
\(536\) 4.22775 + 7.32268i 0.182611 + 0.316292i
\(537\) −7.50699 + 13.0025i −0.323951 + 0.561099i
\(538\) 2.93966i 0.126738i
\(539\) 0 0
\(540\) −1.38344 0.798732i −0.0595340 0.0343719i
\(541\) 29.4589i 1.26654i −0.773932 0.633269i \(-0.781713\pi\)
0.773932 0.633269i \(-0.218287\pi\)
\(542\) 7.92301 13.7231i 0.340322 0.589456i
\(543\) −17.7454 30.7359i −0.761527 1.31900i
\(544\) −4.34160 + 2.50662i −0.186144 + 0.107471i
\(545\) 48.3634 2.07166
\(546\) 0 0
\(547\) −9.59486 −0.410246 −0.205123 0.978736i \(-0.565760\pi\)
−0.205123 + 0.978736i \(0.565760\pi\)
\(548\) −4.47276 + 2.58235i −0.191067 + 0.110313i
\(549\) 4.24997 + 7.36117i 0.181384 + 0.314167i
\(550\) 5.21552 9.03354i 0.222391 0.385192i
\(551\) 8.35405i 0.355894i
\(552\) −0.210590 0.121584i −0.00896330 0.00517497i
\(553\) 0 0
\(554\) 22.2223i 0.944135i
\(555\) −1.70290 + 2.94951i −0.0722841 + 0.125200i
\(556\) 3.44149 + 5.96083i 0.145952 + 0.252796i
\(557\) −2.30315 + 1.32973i −0.0975877 + 0.0563423i −0.548000 0.836479i \(-0.684610\pi\)
0.450412 + 0.892821i \(0.351277\pi\)
\(558\) 26.6138 1.12665
\(559\) 3.51793 3.01654i 0.148793 0.127586i
\(560\) 0 0
\(561\) −40.8620 + 23.5917i −1.72520 + 0.996042i
\(562\) 4.59438 + 7.95770i 0.193802 + 0.335675i
\(563\) 8.24254 14.2765i 0.347382 0.601683i −0.638402 0.769703i \(-0.720404\pi\)
0.985783 + 0.168021i \(0.0537375\pi\)
\(564\) 24.6134i 1.03641i
\(565\) −5.97304 3.44854i −0.251288 0.145081i
\(566\) −14.7711 8.52808i −0.620875 0.358462i
\(567\) 0 0
\(568\) 2.92762 5.07078i 0.122840 0.212765i
\(569\) 4.38749 + 7.59936i 0.183933 + 0.318582i 0.943217 0.332179i \(-0.107784\pi\)
−0.759283 + 0.650760i \(0.774450\pi\)
\(570\) 18.6440 10.7641i 0.780913 0.450860i
\(571\) 16.6346 0.696134 0.348067 0.937470i \(-0.386838\pi\)
0.348067 + 0.937470i \(0.386838\pi\)
\(572\) 4.51330 12.8250i 0.188711 0.536239i
\(573\) −29.4261 −1.22929
\(574\) 0 0
\(575\) −0.134752 0.233397i −0.00561954 0.00973332i
\(576\) 1.61483 2.79697i 0.0672847 0.116540i
\(577\) 12.3608i 0.514586i −0.966333 0.257293i \(-0.917169\pi\)
0.966333 0.257293i \(-0.0828305\pi\)
\(578\) 7.04306 + 4.06631i 0.292953 + 0.169136i
\(579\) 10.4731 + 6.04667i 0.435249 + 0.251291i
\(580\) 7.52195i 0.312332i
\(581\) 0 0
\(582\) −7.93810 13.7492i −0.329045 0.569922i
\(583\) −33.5625 + 19.3773i −1.39002 + 0.802527i
\(584\) 15.3226 0.634054
\(585\) −21.1239 24.6350i −0.873364 1.01853i
\(586\) −25.6843 −1.06101
\(587\) 11.1764 6.45268i 0.461298 0.266331i −0.251292 0.967911i \(-0.580855\pi\)
0.712590 + 0.701581i \(0.247522\pi\)
\(588\) 0 0
\(589\) −12.7524 + 22.0877i −0.525452 + 0.910110i
\(590\) 15.1559i 0.623958i
\(591\) 13.1324 + 7.58202i 0.540196 + 0.311882i
\(592\) −0.424045 0.244823i −0.0174281 0.0100621i
\(593\) 27.0616i 1.11129i −0.831420 0.555644i \(-0.812472\pi\)
0.831420 0.555644i \(-0.187528\pi\)
\(594\) 1.08077 1.87195i 0.0443446 0.0768070i
\(595\) 0 0
\(596\) −8.20500 + 4.73716i −0.336090 + 0.194042i
\(597\) −14.1139 −0.577644
\(598\) −0.228657 0.266664i −0.00935050 0.0109047i
\(599\) 5.75554 0.235165 0.117582 0.993063i \(-0.462486\pi\)
0.117582 + 0.993063i \(0.462486\pi\)
\(600\) 5.97933 3.45217i 0.244105 0.140934i
\(601\) 12.5000 + 21.6506i 0.509886 + 0.883148i 0.999934 + 0.0114531i \(0.00364571\pi\)
−0.490049 + 0.871695i \(0.663021\pi\)
\(602\) 0 0
\(603\) 27.3084i 1.11209i
\(604\) 11.1374 + 6.43017i 0.453174 + 0.261640i
\(605\) 7.76940 + 4.48566i 0.315871 + 0.182368i
\(606\) 24.0837i 0.978334i
\(607\) −16.4581 + 28.5062i −0.668012 + 1.15703i 0.310447 + 0.950591i \(0.399521\pi\)
−0.978459 + 0.206441i \(0.933812\pi\)
\(608\) 1.54754 + 2.68042i 0.0627610 + 0.108705i
\(609\) 0 0
\(610\) −7.33439 −0.296961
\(611\) 11.8031 33.5396i 0.477502 1.35687i
\(612\) −16.1911 −0.654486
\(613\) −40.1590 + 23.1858i −1.62201 + 0.936467i −0.635626 + 0.771997i \(0.719258\pi\)
−0.986382 + 0.164469i \(0.947409\pi\)
\(614\) 9.59933 + 16.6265i 0.387398 + 0.670992i
\(615\) 33.3234 57.7178i 1.34373 2.32741i
\(616\) 0 0
\(617\) 1.15943 + 0.669398i 0.0466769 + 0.0269489i 0.523157 0.852236i \(-0.324754\pi\)
−0.476480 + 0.879185i \(0.658088\pi\)
\(618\) 16.7503 + 9.67079i 0.673796 + 0.389016i
\(619\) 35.4593i 1.42523i −0.701555 0.712615i \(-0.747511\pi\)
0.701555 0.712615i \(-0.252489\pi\)
\(620\) −11.4822 + 19.8877i −0.461136 + 0.798710i
\(621\) −0.0279235 0.0483650i −0.00112053 0.00194082i
\(622\) 5.79531 3.34592i 0.232371 0.134159i
\(623\) 0 0
\(624\) 6.83158 5.85791i 0.273482 0.234504i
\(625\) −31.1791 −1.24716
\(626\) 7.47648 4.31655i 0.298820 0.172524i
\(627\) 14.5650 + 25.2274i 0.581672 + 1.00749i
\(628\) −1.00245 + 1.73629i −0.0400020 + 0.0692854i
\(629\) 2.45471i 0.0978757i
\(630\) 0 0
\(631\) −16.2308 9.37087i −0.646139 0.373049i 0.140836 0.990033i \(-0.455021\pi\)
−0.786975 + 0.616984i \(0.788354\pi\)
\(632\) 11.1089i 0.441888i
\(633\) −15.0715 + 26.1047i −0.599040 + 1.03757i
\(634\) 7.39856 + 12.8147i 0.293834 + 0.508936i
\(635\) 14.8168 8.55448i 0.587987 0.339474i
\(636\) −25.6518 −1.01716
\(637\) 0 0
\(638\) 10.1780 0.402952
\(639\) 16.3769 9.45523i 0.647861 0.374043i
\(640\) 1.39340 + 2.41344i 0.0550789 + 0.0953995i
\(641\) −6.90063 + 11.9522i −0.272559 + 0.472085i −0.969516 0.245027i \(-0.921203\pi\)
0.696958 + 0.717112i \(0.254537\pi\)
\(642\) 43.0469i 1.69893i
\(643\) −8.54461 4.93323i −0.336967 0.194548i 0.321963 0.946752i \(-0.395657\pi\)
−0.658930 + 0.752204i \(0.728991\pi\)
\(644\) 0 0
\(645\) 8.93996i 0.352011i
\(646\) 7.75819 13.4376i 0.305242 0.528695i
\(647\) 15.0867 + 26.1310i 0.593120 + 1.02731i 0.993809 + 0.111101i \(0.0354375\pi\)
−0.400689 + 0.916214i \(0.631229\pi\)
\(648\) −7.15186 + 4.12913i −0.280952 + 0.162208i
\(649\) −20.5076 −0.804992
\(650\) 9.80322 1.83680i 0.384514 0.0720450i
\(651\) 0 0
\(652\) −8.88376 + 5.12904i −0.347915 + 0.200869i
\(653\) −3.66066 6.34046i −0.143253 0.248121i 0.785467 0.618904i \(-0.212423\pi\)
−0.928720 + 0.370782i \(0.879090\pi\)
\(654\) −21.6578 + 37.5124i −0.846887 + 1.46685i
\(655\) 24.5603i 0.959649i
\(656\) 8.29797 + 4.79084i 0.323981 + 0.187051i
\(657\) 42.8569 + 24.7434i 1.67201 + 0.965334i
\(658\) 0 0
\(659\) 9.37228 16.2333i 0.365092 0.632358i −0.623699 0.781665i \(-0.714371\pi\)
0.988791 + 0.149307i \(0.0477042\pi\)
\(660\) 13.1143 + 22.7147i 0.510474 + 0.884167i
\(661\) −28.2737 + 16.3238i −1.09972 + 0.634924i −0.936148 0.351607i \(-0.885635\pi\)
−0.163573 + 0.986531i \(0.552302\pi\)
\(662\) 0.637109 0.0247620
\(663\) −42.5569 14.9764i −1.65277 0.581635i
\(664\) 16.0283 0.622017
\(665\) 0 0
\(666\) −0.790695 1.36952i −0.0306388 0.0530680i
\(667\) 0.131483 0.227735i 0.00509105 0.00881795i
\(668\) 3.29611i 0.127530i
\(669\) 46.6436 + 26.9297i 1.80334 + 1.04116i
\(670\) −20.4068 11.7819i −0.788384 0.455174i
\(671\) 9.92423i 0.383121i
\(672\) 0 0
\(673\) −5.06141 8.76662i −0.195103 0.337928i 0.751831 0.659356i \(-0.229171\pi\)
−0.946934 + 0.321427i \(0.895837\pi\)
\(674\) 14.2051 8.20131i 0.547159 0.315903i
\(675\) 1.58568 0.0610328
\(676\) 12.1182 4.70631i 0.466084 0.181012i
\(677\) 17.5227 0.673451 0.336725 0.941603i \(-0.390681\pi\)
0.336725 + 0.941603i \(0.390681\pi\)
\(678\) 5.34962 3.08860i 0.205451 0.118617i
\(679\) 0 0
\(680\) 6.98545 12.0992i 0.267880 0.463981i
\(681\) 7.52862i 0.288497i
\(682\) −26.9103 15.5366i −1.03045 0.594929i
\(683\) 16.9201 + 9.76885i 0.647432 + 0.373795i 0.787471 0.616351i \(-0.211390\pi\)
−0.140040 + 0.990146i \(0.544723\pi\)
\(684\) 9.99606i 0.382209i
\(685\) 7.19649 12.4647i 0.274964 0.476251i
\(686\) 0 0
\(687\) −27.2211 + 15.7161i −1.03855 + 0.599608i
\(688\) −1.28528 −0.0490009
\(689\) −34.9546 12.3011i −1.33167 0.468633i
\(690\) 0.677661 0.0257981
\(691\) 24.6690 14.2427i 0.938453 0.541816i 0.0489782 0.998800i \(-0.484404\pi\)
0.889475 + 0.456984i \(0.151070\pi\)
\(692\) −2.72291 4.71621i −0.103509 0.179283i
\(693\) 0 0
\(694\) 29.8388i 1.13266i
\(695\) −16.6116 9.59073i −0.630115 0.363797i
\(696\) 5.83429 + 3.36843i 0.221148 + 0.127680i
\(697\) 48.0353i 1.81947i
\(698\) −2.36845 + 4.10228i −0.0896473 + 0.155274i
\(699\) 21.5838 + 37.3843i 0.816376 + 1.41400i
\(700\) 0 0
\(701\) −18.5649 −0.701186 −0.350593 0.936528i \(-0.614020\pi\)
−0.350593 + 0.936528i \(0.614020\pi\)
\(702\) 2.03144 0.380625i 0.0766719 0.0143657i
\(703\) 1.51549 0.0571578
\(704\) −3.26564 + 1.88542i −0.123079 + 0.0710594i
\(705\) 34.2963 + 59.4029i 1.29167 + 2.23724i
\(706\) −12.5691 + 21.7703i −0.473044 + 0.819335i
\(707\) 0 0
\(708\) −11.7554 6.78701i −0.441796 0.255071i
\(709\) 44.2691 + 25.5588i 1.66256 + 0.959880i 0.971486 + 0.237095i \(0.0761953\pi\)
0.691074 + 0.722784i \(0.257138\pi\)
\(710\) 16.3174i 0.612380i
\(711\) −17.9390 + 31.0712i −0.672764 + 1.16526i
\(712\) 7.16387 + 12.4082i 0.268477 + 0.465017i
\(713\) −0.695272 + 0.401415i −0.0260381 + 0.0150331i
\(714\) 0 0
\(715\) 6.97774 + 37.2411i 0.260953 + 1.39274i
\(716\) 6.01539 0.224806
\(717\) −33.9178 + 19.5825i −1.26668 + 0.731320i
\(718\) −17.5290 30.3611i −0.654176 1.13307i
\(719\) 11.1514 19.3147i 0.415876 0.720318i −0.579644 0.814870i \(-0.696809\pi\)
0.995520 + 0.0945520i \(0.0301419\pi\)
\(720\) 9.00042i 0.335426i
\(721\) 0 0
\(722\) 8.15839 + 4.71025i 0.303624 + 0.175297i
\(723\) 46.6540i 1.73508i
\(724\) −7.10973 + 12.3144i −0.264231 + 0.457662i
\(725\) 3.73323 + 6.46615i 0.138649 + 0.240147i
\(726\) −6.95848 + 4.01748i −0.258253 + 0.149103i
\(727\) −17.2920 −0.641324 −0.320662 0.947194i \(-0.603905\pi\)
−0.320662 + 0.947194i \(0.603905\pi\)
\(728\) 0 0
\(729\) −30.9636 −1.14680
\(730\) −36.9802 + 21.3505i −1.36870 + 0.790218i
\(731\) 3.22171 + 5.58017i 0.119159 + 0.206390i
\(732\) 3.28444 5.68881i 0.121396 0.210265i
\(733\) 41.8019i 1.54399i 0.635629 + 0.771995i \(0.280741\pi\)
−0.635629 + 0.771995i \(0.719259\pi\)
\(734\) 6.93250 + 4.00248i 0.255883 + 0.147734i
\(735\) 0 0
\(736\) 0.0974260i 0.00359117i
\(737\) 15.9422 27.6126i 0.587237 1.01712i
\(738\) 15.4728 + 26.7997i 0.569561 + 0.986509i
\(739\) −32.8076 + 18.9415i −1.20685 + 0.696774i −0.962069 0.272806i \(-0.912048\pi\)
−0.244778 + 0.969579i \(0.578715\pi\)
\(740\) 1.36454 0.0501616
\(741\) −9.24614 + 26.2738i −0.339665 + 0.965191i
\(742\) 0 0
\(743\) −8.61540 + 4.97411i −0.316069 + 0.182482i −0.649639 0.760243i \(-0.725080\pi\)
0.333570 + 0.942725i \(0.391747\pi\)
\(744\) −10.2837 17.8120i −0.377021 0.653019i
\(745\) 13.2015 22.8657i 0.483665 0.837733i
\(746\) 28.7262i 1.05174i
\(747\) 44.8306 + 25.8830i 1.64027 + 0.947008i
\(748\) 16.3715 + 9.45207i 0.598600 + 0.345602i
\(749\) 0 0
\(750\) 7.76863 13.4557i 0.283670 0.491331i
\(751\) −18.2470 31.6048i −0.665843 1.15327i −0.979056 0.203592i \(-0.934739\pi\)
0.313212 0.949683i \(-0.398595\pi\)
\(752\) −8.54023 + 4.93071i −0.311430 + 0.179804i
\(753\) −23.7668 −0.866109
\(754\) 6.33484 + 7.38779i 0.230701 + 0.269047i
\(755\) −35.8392 −1.30432
\(756\) 0 0
\(757\) 1.82304 + 3.15759i 0.0662594 + 0.114765i 0.897252 0.441519i \(-0.145560\pi\)
−0.830993 + 0.556284i \(0.812227\pi\)
\(758\) −12.6531 + 21.9159i −0.459582 + 0.796020i
\(759\) 0.916949i 0.0332831i
\(760\) −7.46978 4.31268i −0.270957 0.156437i
\(761\) −27.6262 15.9500i −1.00145 0.578187i −0.0927724 0.995687i \(-0.529573\pi\)
−0.908677 + 0.417500i \(0.862906\pi\)
\(762\) 15.3232i 0.555103i
\(763\) 0 0
\(764\) 5.89482 + 10.2101i 0.213267 + 0.369389i
\(765\) 39.0762 22.5607i 1.41280 0.815682i
\(766\) 7.56305 0.273264
\(767\) −12.7640 14.8855i −0.460881 0.537486i
\(768\) −2.49593 −0.0900641
\(769\) 44.8246 25.8795i 1.61642 0.933238i 0.628578 0.777747i \(-0.283637\pi\)
0.987837 0.155491i \(-0.0496960\pi\)
\(770\) 0 0
\(771\) 3.75821 6.50941i 0.135349 0.234431i
\(772\) 4.84523i 0.174384i
\(773\) −47.5454 27.4504i −1.71009 0.987321i −0.934413 0.356192i \(-0.884075\pi\)
−0.775678 0.631129i \(-0.782592\pi\)
\(774\) −3.59489 2.07551i −0.129216 0.0746028i
\(775\) 22.7950i 0.818819i
\(776\) −3.18042 + 5.50865i −0.114170 + 0.197749i
\(777\) 0 0
\(778\) 5.43442 3.13757i 0.194833 0.112487i
\(779\) −29.6560 −1.06254
\(780\) −8.32519 + 23.6568i −0.298090 + 0.847050i
\(781\) −22.0792 −0.790054
\(782\) 0.422984 0.244210i 0.0151259 0.00873294i
\(783\) 0.773608 + 1.33993i 0.0276465 + 0.0478851i
\(784\) 0 0
\(785\) 5.58723i 0.199417i
\(786\) 19.0498 + 10.9984i 0.679484 + 0.392300i
\(787\) 25.4568 + 14.6975i 0.907438 + 0.523909i 0.879606 0.475703i \(-0.157806\pi\)
0.0278319 + 0.999613i \(0.491140\pi\)
\(788\) 6.07551i 0.216431i
\(789\) 2.83309 4.90705i 0.100861 0.174696i
\(790\) −15.4791 26.8106i −0.550722 0.953878i
\(791\) 0 0
\(792\) −12.1785 −0.432746
\(793\) 7.20357 6.17688i 0.255806 0.219348i
\(794\) 1.69359 0.0601033
\(795\) 61.9091 35.7432i 2.19569 1.26768i
\(796\) 2.82739 + 4.89718i 0.100214 + 0.173576i
\(797\) −1.82440 + 3.15995i −0.0646234 + 0.111931i −0.896527 0.442989i \(-0.853918\pi\)
0.831903 + 0.554920i \(0.187251\pi\)
\(798\) 0 0
\(799\) 42.8143 + 24.7188i 1.51466 + 0.874489i
\(800\) −2.39563 1.38312i −0.0846984 0.0489006i
\(801\) 46.2738i 1.63500i
\(802\) 0.134724 0.233348i 0.00475725 0.00823980i
\(803\) −28.8895 50.0382i −1.01949 1.76581i
\(804\) 18.2769 10.5522i 0.644576 0.372146i
\(805\) 0 0
\(806\) −5.47168 29.2031i −0.192732 1.02863i
\(807\) 7.33719 0.258281
\(808\) −8.35645 + 4.82460i −0.293979 + 0.169729i
\(809\) 21.0289 + 36.4231i 0.739336 + 1.28057i 0.952795 + 0.303615i \(0.0981936\pi\)
−0.213459 + 0.976952i \(0.568473\pi\)
\(810\) 11.5071 19.9308i 0.404317 0.700297i
\(811\) 53.2847i 1.87108i 0.353222 + 0.935539i \(0.385086\pi\)
−0.353222 + 0.935539i \(0.614914\pi\)
\(812\) 0 0
\(813\) −34.2518 19.7753i −1.20126 0.693549i
\(814\) 1.84637i 0.0647153i
\(815\) 14.2936 24.7572i 0.500683 0.867209i
\(816\) 6.25635 + 10.8363i 0.219016 + 0.379347i
\(817\) 3.44509 1.98902i 0.120528 0.0695871i
\(818\) −32.0946 −1.12216
\(819\) 0 0
\(820\) −26.7022 −0.932480
\(821\) −13.7097 + 7.91527i −0.478470 + 0.276245i −0.719779 0.694203i \(-0.755757\pi\)
0.241308 + 0.970448i \(0.422423\pi\)
\(822\) 6.44537 + 11.1637i 0.224808 + 0.389379i
\(823\) 13.5651 23.4955i 0.472851 0.819003i −0.526666 0.850072i \(-0.676558\pi\)
0.999517 + 0.0310699i \(0.00989144\pi\)
\(824\) 7.74925i 0.269958i
\(825\) −22.5471 13.0176i −0.784989 0.453214i
\(826\) 0 0
\(827\) 18.8496i 0.655464i 0.944771 + 0.327732i \(0.106284\pi\)
−0.944771 + 0.327732i \(0.893716\pi\)
\(828\) −0.157327 + 0.272498i −0.00546748 + 0.00946995i
\(829\) −8.03188 13.9116i −0.278959 0.483171i 0.692168 0.721737i \(-0.256656\pi\)
−0.971126 + 0.238566i \(0.923323\pi\)
\(830\) −38.6832 + 22.3338i −1.34271 + 0.775216i
\(831\) 55.4653 1.92407
\(832\) −3.40109 1.19690i −0.117912 0.0414949i
\(833\) 0 0
\(834\) 14.8778 8.58971i 0.515177 0.297437i
\(835\) −4.59280 7.95496i −0.158940 0.275293i
\(836\) 5.83552 10.1074i 0.201826 0.349572i
\(837\) 4.72362i 0.163272i
\(838\) −5.92595 3.42135i −0.204709 0.118189i
\(839\) 5.87434 + 3.39155i 0.202805 + 0.117089i 0.597963 0.801524i \(-0.295977\pi\)
−0.395158 + 0.918613i \(0.629310\pi\)
\(840\) 0 0
\(841\) 10.8573 18.8054i 0.374390 0.648463i
\(842\) 6.60824 + 11.4458i 0.227735 + 0.394449i
\(843\) 19.8619 11.4673i 0.684079 0.394953i
\(844\) 12.0769 0.415704
\(845\) −22.6887 + 28.2439i −0.780516 + 0.971618i
\(846\) −31.8490 −1.09499
\(847\) 0 0
\(848\) 5.13873 + 8.90055i 0.176465 + 0.305646i
\(849\) −21.2855 + 36.8676i −0.730516 + 1.26529i
\(850\) 13.8678i 0.475663i
\(851\) 0.0413130 + 0.0238521i 0.00141619 + 0.000817639i
\(852\) −12.6563 7.30713i −0.433598 0.250338i
\(853\) 12.9032i 0.441796i −0.975297 0.220898i \(-0.929101\pi\)
0.975297 0.220898i \(-0.0708988\pi\)
\(854\) 0 0
\(855\) −13.9285 24.1249i −0.476345 0.825053i
\(856\) −14.9362 + 8.62343i −0.510509 + 0.294743i
\(857\) −4.90661 −0.167606 −0.0838032 0.996482i \(-0.526707\pi\)
−0.0838032 + 0.996482i \(0.526707\pi\)
\(858\) −32.0102 11.2649i −1.09281 0.384577i
\(859\) −11.4512 −0.390709 −0.195354 0.980733i \(-0.562586\pi\)
−0.195354 + 0.980733i \(0.562586\pi\)
\(860\) 3.10194 1.79091i 0.105775 0.0610695i
\(861\) 0 0
\(862\) −12.1839 + 21.1031i −0.414984 + 0.718774i
\(863\) 21.7298i 0.739692i 0.929093 + 0.369846i \(0.120590\pi\)
−0.929093 + 0.369846i \(0.879410\pi\)
\(864\) −0.496428 0.286613i −0.0168888 0.00975077i
\(865\) 13.1431 + 7.58819i 0.446880 + 0.258006i
\(866\) 18.6290i 0.633038i
\(867\) 10.1492 17.5790i 0.344686 0.597013i
\(868\) 0 0
\(869\) 36.2776 20.9449i 1.23063 0.710507i
\(870\) −18.7743 −0.636507
\(871\) 29.9653 5.61449i 1.01534 0.190240i
\(872\) 17.3545 0.587697
\(873\) −17.7911 + 10.2717i −0.602137 + 0.347644i
\(874\) −0.150770 0.261142i −0.00509989 0.00883326i
\(875\) 0 0
\(876\) 38.2442i 1.29215i
\(877\) −14.1349 8.16076i −0.477300 0.275569i 0.241990 0.970279i \(-0.422200\pi\)
−0.719291 + 0.694709i \(0.755533\pi\)
\(878\) −3.76884 2.17594i −0.127192 0.0734344i
\(879\) 64.1063i 2.16225i
\(880\) 5.25428 9.10068i 0.177122 0.306784i
\(881\) −4.59758 7.96324i −0.154896 0.268289i 0.778125 0.628110i \(-0.216171\pi\)
−0.933021 + 0.359821i \(0.882838\pi\)
\(882\) 0 0
\(883\) 44.7661 1.50650 0.753249 0.657735i \(-0.228485\pi\)
0.753249 + 0.657735i \(0.228485\pi\)
\(884\) 3.32882 + 17.7663i 0.111960 + 0.597547i
\(885\) 37.8280 1.27157
\(886\) −2.01601 + 1.16394i −0.0677291 + 0.0391034i
\(887\) −13.2472 22.9448i −0.444797 0.770411i 0.553241 0.833021i \(-0.313391\pi\)
−0.998038 + 0.0626102i \(0.980058\pi\)
\(888\) −0.611060 + 1.05839i −0.0205058 + 0.0355171i
\(889\) 0 0
\(890\) −34.5791 19.9643i −1.15909 0.669203i
\(891\) 26.9685 + 15.5703i 0.903480 + 0.521624i
\(892\) 21.5789i 0.722514i
\(893\) 15.2609 26.4327i 0.510687 0.884536i
\(894\) 11.8236 + 20.4791i 0.395441 + 0.684923i
\(895\) −14.5178 + 8.38183i −0.485275 + 0.280174i
\(896\) 0 0
\(897\) −0.665573 + 0.570713i −0.0222229 + 0.0190555i
\(898\) 20.1511 0.672452
\(899\) 19.2622 11.1210i 0.642429 0.370907i
\(900\) −4.46701 7.73709i −0.148900 0.257903i
\(901\) 25.7617 44.6206i 0.858248 1.48653i
\(902\) 36.1309i 1.20303i
\(903\) 0 0
\(904\) −2.14334 1.23746i −0.0712863 0.0411572i
\(905\) 39.6268i 1.31724i
\(906\) 16.0493 27.7981i 0.533201 0.923531i
\(907\) 16.0687 + 27.8319i 0.533554 + 0.924142i 0.999232 + 0.0391879i \(0.0124771\pi\)
−0.465678 + 0.884954i \(0.654190\pi\)
\(908\) 2.61224 1.50818i 0.0866903 0.0500507i
\(909\) −31.1637 −1.03363
\(910\) 0 0
\(911\) 32.8753 1.08921 0.544603 0.838694i \(-0.316680\pi\)
0.544603 + 0.838694i \(0.316680\pi\)
\(912\) 6.69013 3.86255i 0.221532 0.127902i
\(913\) −30.2200 52.3426i −1.00014 1.73229i
\(914\) −2.00413 + 3.47125i −0.0662907 + 0.114819i
\(915\) 18.3061i 0.605182i
\(916\) 10.9062 + 6.29670i 0.360351 + 0.208049i
\(917\) 0 0
\(918\) 2.87372i 0.0948469i
\(919\) −1.48641 + 2.57454i −0.0490321 + 0.0849262i −0.889500 0.456936i \(-0.848947\pi\)
0.840468 + 0.541862i \(0.182280\pi\)
\(920\) −0.135753 0.235131i −0.00447565 0.00775205i
\(921\) 41.4987 23.9593i 1.36743 0.789485i
\(922\) −13.4645 −0.443429
\(923\) −13.7422 16.0263i −0.452329 0.527512i
\(924\) 0 0
\(925\) −1.17301 + 0.677238i −0.0385683 + 0.0222674i
\(926\) 0.733869 + 1.27110i 0.0241164 + 0.0417709i
\(927\) 12.5137 21.6744i 0.411005 0.711881i
\(928\) 2.69914i 0.0886036i
\(929\) −32.5418 18.7880i −1.06766 0.616414i −0.140120 0.990135i \(-0.544749\pi\)
−0.927541 + 0.373720i \(0.878082\pi\)
\(930\) 49.6384 + 28.6587i 1.62771 + 0.939757i
\(931\) 0 0
\(932\) 8.64761 14.9781i 0.283262 0.490624i
\(933\) −8.35119 14.4647i −0.273406 0.473552i
\(934\) −8.67558 + 5.00885i −0.283874 + 0.163895i
\(935\) −52.6820 −1.72289
\(936\) −7.57998 8.83988i −0.247759 0.288940i
\(937\) −39.5464 −1.29192 −0.645962 0.763369i \(-0.723544\pi\)
−0.645962 + 0.763369i \(0.723544\pi\)
\(938\) 0 0
\(939\) −10.7738 18.6608i −0.351590 0.608971i
\(940\) 13.7409 23.7999i 0.448178 0.776267i
\(941\) 35.4992i 1.15724i −0.815597 0.578620i \(-0.803591\pi\)
0.815597 0.578620i \(-0.196409\pi\)
\(942\) 4.33365 + 2.50203i 0.141198 + 0.0815207i
\(943\) −0.808438 0.466752i −0.0263264 0.0151995i
\(944\) 5.43846i 0.177007i
\(945\) 0 0
\(946\) 2.42329 + 4.19727i 0.0787881 + 0.136465i
\(947\) −31.7413 + 18.3258i −1.03145 + 0.595509i −0.917400 0.397965i \(-0.869716\pi\)
−0.114052 + 0.993475i \(0.536383\pi\)
\(948\) 27.7270 0.900530
\(949\) 18.3396 52.1136i 0.595328 1.69168i
\(950\) 8.56172 0.277779
\(951\) 31.9846 18.4663i 1.03717 0.598810i
\(952\) 0 0
\(953\) 13.1191 22.7230i 0.424971 0.736071i −0.571447 0.820639i \(-0.693618\pi\)
0.996418 + 0.0845679i \(0.0269510\pi\)
\(954\) 33.1928i 1.07466i
\(955\) −28.4535 16.4277i −0.920735 0.531586i
\(956\) 13.5893 + 7.84576i 0.439508 + 0.253750i
\(957\) 25.4036i 0.821182i
\(958\) 4.47082 7.74369i 0.144446 0.250187i
\(959\) 0 0
\(960\) 6.02377 3.47782i 0.194416 0.112246i
\(961\) −36.9045 −1.19047
\(962\) −1.34020 + 1.14919i −0.0432099 + 0.0370514i
\(963\) −55.7016 −1.79496
\(964\) 16.1878 9.34601i 0.521373 0.301015i
\(965\) 6.75133 + 11.6937i 0.217333 + 0.376432i
\(966\) 0 0
\(967\) 9.22945i 0.296799i 0.988927 + 0.148400i \(0.0474122\pi\)
−0.988927 + 0.148400i \(0.952588\pi\)
\(968\) 2.78793 + 1.60961i 0.0896075 + 0.0517349i
\(969\) −33.5393 19.3639i −1.07744 0.622058i
\(970\) 17.7264i 0.569159i
\(971\) 5.05018 8.74717i 0.162068 0.280710i −0.773542 0.633745i \(-0.781517\pi\)
0.935610 + 0.353035i \(0.114850\pi\)
\(972\) 11.1659 + 19.3398i 0.358145 + 0.620325i
\(973\) 0 0
\(974\) 21.2809 0.681883
\(975\) −4.58451 24.4682i −0.146822 0.783608i
\(976\) −2.63184 −0.0842430
\(977\) 39.8299 22.9958i 1.27427 0.735701i 0.298482 0.954415i \(-0.403520\pi\)
0.975789 + 0.218715i \(0.0701864\pi\)
\(978\) 12.8017 + 22.1733i 0.409354 + 0.709022i
\(979\) 27.0138 46.7893i 0.863365 1.49539i
\(980\) 0 0
\(981\) 48.5400 + 28.0246i 1.54976 + 0.894756i
\(982\) −5.99247 3.45976i −0.191228 0.110405i
\(983\) 25.5285i 0.814232i 0.913376 + 0.407116i \(0.133466\pi\)
−0.913376 + 0.407116i \(0.866534\pi\)
\(984\) 11.9576 20.7111i 0.381194 0.660247i
\(985\) 8.46560 + 14.6629i 0.269736 + 0.467197i
\(986\) −11.7186 + 6.76572i −0.373196 + 0.215465i
\(987\) 0 0
\(988\) 10.9686 2.05515i 0.348957 0.0653829i
\(989\) 0.125220 0.00398176
\(990\) 29.3921 16.9696i 0.934144 0.539328i
\(991\) 22.5708 + 39.0937i 0.716984 + 1.24185i 0.962189 + 0.272382i \(0.0878113\pi\)
−0.245205 + 0.969471i \(0.578855\pi\)
\(992\) −4.12021 + 7.13641i −0.130817 + 0.226581i
\(993\) 1.59018i 0.0504628i
\(994\) 0 0
\(995\) −13.6474 7.87936i −0.432653 0.249792i
\(996\) 40.0054i 1.26762i
\(997\) 1.83618 3.18035i 0.0581523 0.100723i −0.835484 0.549515i \(-0.814812\pi\)
0.893636 + 0.448792i \(0.148146\pi\)
\(998\) 10.1907 + 17.6508i 0.322580 + 0.558725i
\(999\) −0.243074 + 0.140339i −0.00769051 + 0.00444012i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.g.491.5 20
7.2 even 3 182.2.v.a.179.6 yes 20
7.3 odd 6 1274.2.o.h.569.1 20
7.4 even 3 182.2.o.a.23.5 20
7.5 odd 6 1274.2.v.h.361.10 20
7.6 odd 2 1274.2.m.f.491.1 20
13.4 even 6 inner 1274.2.m.g.589.5 20
21.2 odd 6 1638.2.cr.c.361.2 20
21.11 odd 6 1638.2.dt.c.1297.9 20
91.4 even 6 182.2.v.a.121.6 yes 20
91.17 odd 6 1274.2.v.h.667.10 20
91.30 even 6 182.2.o.a.95.10 yes 20
91.69 odd 6 1274.2.m.f.589.1 20
91.82 odd 6 1274.2.o.h.459.6 20
273.95 odd 6 1638.2.cr.c.667.2 20
273.212 odd 6 1638.2.dt.c.1369.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.5 20 7.4 even 3
182.2.o.a.95.10 yes 20 91.30 even 6
182.2.v.a.121.6 yes 20 91.4 even 6
182.2.v.a.179.6 yes 20 7.2 even 3
1274.2.m.f.491.1 20 7.6 odd 2
1274.2.m.f.589.1 20 91.69 odd 6
1274.2.m.g.491.5 20 1.1 even 1 trivial
1274.2.m.g.589.5 20 13.4 even 6 inner
1274.2.o.h.459.6 20 91.82 odd 6
1274.2.o.h.569.1 20 7.3 odd 6
1274.2.v.h.361.10 20 7.5 odd 6
1274.2.v.h.667.10 20 91.17 odd 6
1638.2.cr.c.361.2 20 21.2 odd 6
1638.2.cr.c.667.2 20 273.95 odd 6
1638.2.dt.c.1297.9 20 21.11 odd 6
1638.2.dt.c.1369.4 20 273.212 odd 6