L(s) = 1 | + (−0.866 − 0.5i)2-s + (1.24 − 2.16i)3-s + (0.499 + 0.866i)4-s − 2.78i·5-s + (−2.16 + 1.24i)6-s − 0.999i·8-s + (−1.61 − 2.79i)9-s + (−1.39 + 2.41i)10-s + (3.26 + 1.88i)11-s + 2.49·12-s + (3.40 − 1.19i)13-s + (−6.02 − 3.47i)15-s + (−0.5 + 0.866i)16-s + (−2.50 − 4.34i)17-s + 3.22i·18-s + (2.68 − 1.54i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.720 − 1.24i)3-s + (0.249 + 0.433i)4-s − 1.24i·5-s + (−0.882 + 0.509i)6-s − 0.353i·8-s + (−0.538 − 0.932i)9-s + (−0.440 + 0.763i)10-s + (0.984 + 0.568i)11-s + 0.720·12-s + (0.943 − 0.331i)13-s + (−1.55 − 0.897i)15-s + (−0.125 + 0.216i)16-s + (−0.607 − 1.05i)17-s + 0.761i·18-s + (0.614 − 0.355i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.344i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.938 + 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.662986340\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.662986340\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-3.40 + 1.19i)T \) |
good | 3 | \( 1 + (-1.24 + 2.16i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.78iT - 5T^{2} \) |
| 11 | \( 1 + (-3.26 - 1.88i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.50 + 4.34i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.68 + 1.54i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.0487 + 0.0843i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.34 - 2.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.24iT - 31T^{2} \) |
| 37 | \( 1 + (-0.424 - 0.244i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (8.29 + 4.79i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.642 - 1.11i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 9.86iT - 47T^{2} \) |
| 53 | \( 1 + 10.2T + 53T^{2} \) |
| 59 | \( 1 + (4.70 - 2.71i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.31 - 2.27i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.32 - 4.22i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.07 - 2.92i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 15.3iT - 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 - 16.0iT - 83T^{2} \) |
| 89 | \( 1 + (-12.4 - 7.16i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.50 + 3.18i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.148163541422294073039339595112, −8.580276558326329926516567346018, −7.84122576712399412466187011095, −7.10838423536933510846946411728, −6.30593436883049496773344447773, −5.01178792262399253972320073408, −3.90525812465561444882136786180, −2.67130664993453861465222417216, −1.57171218104208027569937527033, −0.855326074848206757252877822359,
1.76910217890211652656463168833, 3.33323193148390330656319224176, 3.59797553513985069999429981780, 4.86089884406739349855339294855, 6.27115800872477833492566599458, 6.57398664483239262522361795309, 7.80555399392228042308293744572, 8.685283863737396804654248874258, 9.098124361514771426459606462929, 10.03405528552624323393416790554