Properties

Label 2-1274-1.1-c1-0-30
Degree $2$
Conductor $1274$
Sign $-1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s − 8-s − 2·9-s − 2·10-s + 11-s − 12-s + 13-s − 2·15-s + 16-s − 4·17-s + 2·18-s − 4·19-s + 2·20-s − 22-s − 5·23-s + 24-s − 25-s − 26-s + 5·27-s + 6·29-s + 2·30-s − 11·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s − 0.353·8-s − 2/3·9-s − 0.632·10-s + 0.301·11-s − 0.288·12-s + 0.277·13-s − 0.516·15-s + 1/4·16-s − 0.970·17-s + 0.471·18-s − 0.917·19-s + 0.447·20-s − 0.213·22-s − 1.04·23-s + 0.204·24-s − 1/5·25-s − 0.196·26-s + 0.962·27-s + 1.11·29-s + 0.365·30-s − 1.97·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.219955275192213099969260456162, −8.658993015233193813263697068074, −7.74743301941803870846936002176, −6.49433799380884794638861677672, −6.19868577061426635646185050789, −5.29483134041303464053290762791, −4.08472177649791044391477953621, −2.63743149324984044028432894824, −1.67425462808243907178495844610, 0, 1.67425462808243907178495844610, 2.63743149324984044028432894824, 4.08472177649791044391477953621, 5.29483134041303464053290762791, 6.19868577061426635646185050789, 6.49433799380884794638861677672, 7.74743301941803870846936002176, 8.658993015233193813263697068074, 9.219955275192213099969260456162

Graph of the $Z$-function along the critical line