Properties

Label 2-1274-1.1-c1-0-29
Degree $2$
Conductor $1274$
Sign $-1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s + 11-s + 13-s + 16-s + 17-s + 3·18-s − 5·19-s − 22-s + 2·23-s − 5·25-s − 26-s − 5·29-s + 8·31-s − 32-s − 34-s − 3·36-s − 8·37-s + 5·38-s − 6·43-s + 44-s − 2·46-s − 11·47-s + 5·50-s + 52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s + 0.301·11-s + 0.277·13-s + 1/4·16-s + 0.242·17-s + 0.707·18-s − 1.14·19-s − 0.213·22-s + 0.417·23-s − 25-s − 0.196·26-s − 0.928·29-s + 1.43·31-s − 0.176·32-s − 0.171·34-s − 1/2·36-s − 1.31·37-s + 0.811·38-s − 0.914·43-s + 0.150·44-s − 0.294·46-s − 1.60·47-s + 0.707·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.148455860909682838797173901070, −8.497896543609873926125954110851, −7.892623211107852747063289943971, −6.77787793409627877002812525492, −6.11487072062742008375174810943, −5.17911252335806779633942989720, −3.88526933294650325440678641270, −2.84543042016155242145018415800, −1.67048910195037592964188302297, 0, 1.67048910195037592964188302297, 2.84543042016155242145018415800, 3.88526933294650325440678641270, 5.17911252335806779633942989720, 6.11487072062742008375174810943, 6.77787793409627877002812525492, 7.892623211107852747063289943971, 8.497896543609873926125954110851, 9.148455860909682838797173901070

Graph of the $Z$-function along the critical line