Properties

Label 2-123981-1.1-c1-0-9
Degree $2$
Conductor $123981$
Sign $-1$
Analytic cond. $989.993$
Root an. cond. $31.4641$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 3·5-s + 6-s + 7-s + 3·8-s + 9-s + 3·10-s + 11-s + 12-s − 13-s − 14-s + 3·15-s − 16-s − 18-s + 7·19-s + 3·20-s − 21-s − 22-s − 3·23-s − 3·24-s + 4·25-s + 26-s − 27-s − 28-s + 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 1.34·5-s + 0.408·6-s + 0.377·7-s + 1.06·8-s + 1/3·9-s + 0.948·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.774·15-s − 1/4·16-s − 0.235·18-s + 1.60·19-s + 0.670·20-s − 0.218·21-s − 0.213·22-s − 0.625·23-s − 0.612·24-s + 4/5·25-s + 0.196·26-s − 0.192·27-s − 0.188·28-s + 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123981\)    =    \(3 \cdot 11 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(989.993\)
Root analytic conductor: \(31.4641\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123981,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - T + p T^{2} \) 1.7.ab
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92575765230311, −13.31030030132561, −12.51305518226551, −12.28596137806202, −11.70030896946156, −11.48717486716122, −10.82515395269549, −10.37643141002065, −9.941640824743996, −9.274919468384507, −8.991107377545373, −8.167139056969330, −7.953230947565868, −7.554125859167429, −6.969866377514585, −6.483747527958650, −5.627459705254029, −5.049275231503475, −4.696557754219596, −4.171311161228521, −3.517410603225510, −3.114428639125374, −1.946418934026845, −1.298522989066728, −0.6574991615475455, 0, 0.6574991615475455, 1.298522989066728, 1.946418934026845, 3.114428639125374, 3.517410603225510, 4.171311161228521, 4.696557754219596, 5.049275231503475, 5.627459705254029, 6.483747527958650, 6.969866377514585, 7.554125859167429, 7.953230947565868, 8.167139056969330, 8.991107377545373, 9.274919468384507, 9.941640824743996, 10.37643141002065, 10.82515395269549, 11.48717486716122, 11.70030896946156, 12.28596137806202, 12.51305518226551, 13.31030030132561, 13.92575765230311

Graph of the $Z$-function along the critical line