Properties

Label 2-122694-1.1-c1-0-45
Degree $2$
Conductor $122694$
Sign $-1$
Analytic cond. $979.716$
Root an. cond. $31.3004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 3·5-s − 6-s − 7-s − 8-s + 9-s + 3·10-s + 12-s + 14-s − 3·15-s + 16-s − 18-s + 2·19-s − 3·20-s − 21-s + 3·23-s − 24-s + 4·25-s + 27-s − 28-s + 3·29-s + 3·30-s − 8·31-s − 32-s + 3·35-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.34·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.948·10-s + 0.288·12-s + 0.267·14-s − 0.774·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.670·20-s − 0.218·21-s + 0.625·23-s − 0.204·24-s + 4/5·25-s + 0.192·27-s − 0.188·28-s + 0.557·29-s + 0.547·30-s − 1.43·31-s − 0.176·32-s + 0.507·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122694\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(979.716\)
Root analytic conductor: \(31.3004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 122694,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78992341756673, −13.23697949368295, −12.76564650835855, −12.21429252431120, −11.87401099215650, −11.21312003502978, −11.04286588789533, −10.18336590828501, −9.986717226236728, −9.235571156632598, −8.831674225346358, −8.454261216603982, −7.799923778725890, −7.572606387066090, −6.972007012368255, −6.600733494795119, −5.884869573100354, −5.031972220575753, −4.684959053141307, −3.812888188083469, −3.309203682909644, −3.160975150113557, −2.158031338126329, −1.561827351068482, −0.6933143719718526, 0, 0.6933143719718526, 1.561827351068482, 2.158031338126329, 3.160975150113557, 3.309203682909644, 3.812888188083469, 4.684959053141307, 5.031972220575753, 5.884869573100354, 6.600733494795119, 6.972007012368255, 7.572606387066090, 7.799923778725890, 8.454261216603982, 8.831674225346358, 9.235571156632598, 9.986717226236728, 10.18336590828501, 11.04286588789533, 11.21312003502978, 11.87401099215650, 12.21429252431120, 12.76564650835855, 13.23697949368295, 13.78992341756673

Graph of the $Z$-function along the critical line