Properties

Label 2-1224-1.1-c1-0-5
Degree $2$
Conductor $1224$
Sign $1$
Analytic cond. $9.77368$
Root an. cond. $3.12629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 2·13-s + 17-s + 4·19-s − 2·23-s − 5·25-s + 6·31-s + 10·41-s + 4·43-s + 4·47-s − 3·49-s + 2·53-s + 4·59-s + 4·67-s + 2·71-s − 14·73-s + 6·79-s + 12·83-s + 2·89-s + 4·91-s − 2·97-s + 2·101-s + 4·103-s + 16·107-s − 4·109-s + 6·113-s + 2·119-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.554·13-s + 0.242·17-s + 0.917·19-s − 0.417·23-s − 25-s + 1.07·31-s + 1.56·41-s + 0.609·43-s + 0.583·47-s − 3/7·49-s + 0.274·53-s + 0.520·59-s + 0.488·67-s + 0.237·71-s − 1.63·73-s + 0.675·79-s + 1.31·83-s + 0.211·89-s + 0.419·91-s − 0.203·97-s + 0.199·101-s + 0.394·103-s + 1.54·107-s − 0.383·109-s + 0.564·113-s + 0.183·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1224\)    =    \(2^{3} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(9.77368\)
Root analytic conductor: \(3.12629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1224,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.877616707\)
\(L(\frac12)\) \(\approx\) \(1.877616707\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.727333497988217362385853707969, −8.895695976213285256038805237837, −7.985985062756261177697988597093, −7.48540845964688300784548369243, −6.28428132320064706038813400594, −5.54303189496107426211899879195, −4.55493862607580750994390745098, −3.63500318653539816364252970235, −2.37692569999125749532190868382, −1.10022247683164928183821192985, 1.10022247683164928183821192985, 2.37692569999125749532190868382, 3.63500318653539816364252970235, 4.55493862607580750994390745098, 5.54303189496107426211899879195, 6.28428132320064706038813400594, 7.48540845964688300784548369243, 7.985985062756261177697988597093, 8.895695976213285256038805237837, 9.727333497988217362385853707969

Graph of the $Z$-function along the critical line