Properties

Label 2-12138-1.1-c1-0-9
Degree $2$
Conductor $12138$
Sign $1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s + 7-s − 8-s + 9-s − 3·10-s − 3·11-s + 12-s + 2·13-s − 14-s + 3·15-s + 16-s − 18-s + 2·19-s + 3·20-s + 21-s + 3·22-s − 24-s + 4·25-s − 2·26-s + 27-s + 28-s + 3·29-s − 3·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.904·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s + 0.670·20-s + 0.218·21-s + 0.639·22-s − 0.204·24-s + 4/5·25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s + 0.557·29-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.869131428\)
\(L(\frac12)\) \(\approx\) \(2.869131428\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.45638987977341, −15.78437590475523, −15.28647512499678, −14.72864401107122, −13.87371904925659, −13.66215062060582, −13.17731078847753, −12.32948405592873, −11.79150529307322, −10.78993835101056, −10.57056282153378, −9.831982331395306, −9.474111678746662, −8.763184419738343, −8.198403447345199, −7.720867774709609, −6.842327074285657, −6.305127559596148, −5.516371768729435, −5.023883532316550, −3.983047086306180, −2.960036324345850, −2.421751410283241, −1.695775190573781, −0.8631982657501298, 0.8631982657501298, 1.695775190573781, 2.421751410283241, 2.960036324345850, 3.983047086306180, 5.023883532316550, 5.516371768729435, 6.305127559596148, 6.842327074285657, 7.720867774709609, 8.198403447345199, 8.763184419738343, 9.474111678746662, 9.831982331395306, 10.57056282153378, 10.78993835101056, 11.79150529307322, 12.32948405592873, 13.17731078847753, 13.66215062060582, 13.87371904925659, 14.72864401107122, 15.28647512499678, 15.78437590475523, 16.45638987977341

Graph of the $Z$-function along the critical line