Properties

Label 2-1184-1.1-c1-0-13
Degree $2$
Conductor $1184$
Sign $1$
Analytic cond. $9.45428$
Root an. cond. $3.07478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 4·5-s + 7-s + 6·9-s − 3·11-s + 2·13-s − 12·15-s + 8·17-s + 2·19-s + 3·21-s + 6·23-s + 11·25-s + 9·27-s + 8·31-s − 9·33-s − 4·35-s − 37-s + 6·39-s − 5·41-s + 2·43-s − 24·45-s − 11·47-s − 6·49-s + 24·51-s + 9·53-s + 12·55-s + 6·57-s + ⋯
L(s)  = 1  + 1.73·3-s − 1.78·5-s + 0.377·7-s + 2·9-s − 0.904·11-s + 0.554·13-s − 3.09·15-s + 1.94·17-s + 0.458·19-s + 0.654·21-s + 1.25·23-s + 11/5·25-s + 1.73·27-s + 1.43·31-s − 1.56·33-s − 0.676·35-s − 0.164·37-s + 0.960·39-s − 0.780·41-s + 0.304·43-s − 3.57·45-s − 1.60·47-s − 6/7·49-s + 3.36·51-s + 1.23·53-s + 1.61·55-s + 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1184\)    =    \(2^{5} \cdot 37\)
Sign: $1$
Analytic conductor: \(9.45428\)
Root analytic conductor: \(3.07478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.446585592\)
\(L(\frac12)\) \(\approx\) \(2.446585592\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.648546434276898789747195507571, −8.490529166827239070163924840512, −8.217725009521119599085028706161, −7.63572304597459780773128038137, −6.98150467834209165101675556515, −5.20817284495310242430018493679, −4.27611685284512326935756014151, −3.29292662358312635823710209810, −2.97824748954438677044219419910, −1.19206411521547945511921007919, 1.19206411521547945511921007919, 2.97824748954438677044219419910, 3.29292662358312635823710209810, 4.27611685284512326935756014151, 5.20817284495310242430018493679, 6.98150467834209165101675556515, 7.63572304597459780773128038137, 8.217725009521119599085028706161, 8.490529166827239070163924840512, 9.648546434276898789747195507571

Graph of the $Z$-function along the critical line