Properties

Label 2-116160-1.1-c1-0-138
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 3·7-s + 9-s − 2·13-s + 15-s − 4·17-s + 7·19-s − 3·21-s − 2·23-s + 25-s + 27-s − 6·29-s + 31-s − 3·35-s − 11·37-s − 2·39-s − 8·41-s + 4·43-s + 45-s − 4·47-s + 2·49-s − 4·51-s + 2·53-s + 7·57-s + 2·59-s − 5·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 0.554·13-s + 0.258·15-s − 0.970·17-s + 1.60·19-s − 0.654·21-s − 0.417·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.179·31-s − 0.507·35-s − 1.80·37-s − 0.320·39-s − 1.24·41-s + 0.609·43-s + 0.149·45-s − 0.583·47-s + 2/7·49-s − 0.560·51-s + 0.274·53-s + 0.927·57-s + 0.260·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66462322862619, −13.50512709074451, −13.01462670780389, −12.36569480315812, −12.09355611132992, −11.46029416128054, −10.83480521190094, −10.27242277486376, −9.825510055192443, −9.472546386296579, −9.044437155347442, −8.565401651266849, −7.852795517720748, −7.307658930993145, −6.933340411094517, −6.381199368341521, −5.859182482019860, −5.128612698011389, −4.825439879168166, −3.886958861283846, −3.345425333982713, −3.103523943746029, −2.109814896963931, −1.917135978791390, −0.8174807185888538, 0, 0.8174807185888538, 1.917135978791390, 2.109814896963931, 3.103523943746029, 3.345425333982713, 3.886958861283846, 4.825439879168166, 5.128612698011389, 5.859182482019860, 6.381199368341521, 6.933340411094517, 7.307658930993145, 7.852795517720748, 8.565401651266849, 9.044437155347442, 9.472546386296579, 9.825510055192443, 10.27242277486376, 10.83480521190094, 11.46029416128054, 12.09355611132992, 12.36569480315812, 13.01462670780389, 13.50512709074451, 13.66462322862619

Graph of the $Z$-function along the critical line