Properties

Label 2-116160-1.1-c1-0-128
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 13-s + 15-s + 5·17-s − 19-s + 21-s + 25-s − 27-s − 29-s − 10·31-s + 35-s + 7·37-s − 39-s − 2·41-s + 6·43-s − 45-s + 6·47-s − 6·49-s − 5·51-s − 8·53-s + 57-s − 4·59-s − 4·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.277·13-s + 0.258·15-s + 1.21·17-s − 0.229·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s − 0.185·29-s − 1.79·31-s + 0.169·35-s + 1.15·37-s − 0.160·39-s − 0.312·41-s + 0.914·43-s − 0.149·45-s + 0.875·47-s − 6/7·49-s − 0.700·51-s − 1.09·53-s + 0.132·57-s − 0.520·59-s − 0.512·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93994787619157, −13.16783879904174, −12.72087861214193, −12.48701948760310, −11.94576343738245, −11.33341414772475, −10.98265783514805, −10.59174104215288, −9.916850756434929, −9.451655452775486, −9.096052512656010, −8.301848154150133, −7.838991221373860, −7.389627717874232, −6.909643929291096, −6.105543104885243, −5.971890284878268, −5.197004172516070, −4.800952752598403, −3.955596757145412, −3.651836888154007, −3.020443185172863, −2.238964273675949, −1.457028096481633, −0.7794267336889367, 0, 0.7794267336889367, 1.457028096481633, 2.238964273675949, 3.020443185172863, 3.651836888154007, 3.955596757145412, 4.800952752598403, 5.197004172516070, 5.971890284878268, 6.105543104885243, 6.909643929291096, 7.389627717874232, 7.838991221373860, 8.301848154150133, 9.096052512656010, 9.451655452775486, 9.916850756434929, 10.59174104215288, 10.98265783514805, 11.33341414772475, 11.94576343738245, 12.48701948760310, 12.72087861214193, 13.16783879904174, 13.93994787619157

Graph of the $Z$-function along the critical line