Properties

Label 2-11616-1.1-c1-0-26
Degree $2$
Conductor $11616$
Sign $-1$
Analytic cond. $92.7542$
Root an. cond. $9.63089$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 6·13-s − 2·15-s − 2·17-s + 4·19-s − 4·23-s − 25-s + 27-s − 2·29-s − 4·31-s − 2·37-s + 6·39-s − 10·41-s + 4·43-s − 2·45-s − 4·47-s − 7·49-s − 2·51-s + 6·53-s + 4·57-s − 12·59-s + 6·61-s − 12·65-s − 4·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.66·13-s − 0.516·15-s − 0.485·17-s + 0.917·19-s − 0.834·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.718·31-s − 0.328·37-s + 0.960·39-s − 1.56·41-s + 0.609·43-s − 0.298·45-s − 0.583·47-s − 49-s − 0.280·51-s + 0.824·53-s + 0.529·57-s − 1.56·59-s + 0.768·61-s − 1.48·65-s − 0.488·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11616\)    =    \(2^{5} \cdot 3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(92.7542\)
Root analytic conductor: \(9.63089\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.37697290723129, −16.06101218351296, −15.62195865909658, −15.10904395543114, −14.45354569252311, −13.77720551592287, −13.40207923778198, −12.83827649688164, −11.94593334699646, −11.63608247400279, −10.97132811597587, −10.39576110129093, −9.640784193320601, −8.935147714743594, −8.508093780095230, −7.838196402736734, −7.421724762748686, −6.559720589979173, −5.965177947057952, −5.097976104325146, −4.256324146140304, −3.582601156474390, −3.290538978618851, −2.061292076976783, −1.274450454132136, 0, 1.274450454132136, 2.061292076976783, 3.290538978618851, 3.582601156474390, 4.256324146140304, 5.097976104325146, 5.965177947057952, 6.559720589979173, 7.421724762748686, 7.838196402736734, 8.508093780095230, 8.935147714743594, 9.640784193320601, 10.39576110129093, 10.97132811597587, 11.63608247400279, 11.94593334699646, 12.83827649688164, 13.40207923778198, 13.77720551592287, 14.45354569252311, 15.10904395543114, 15.62195865909658, 16.06101218351296, 16.37697290723129

Graph of the $Z$-function along the critical line