Properties

Label 2-11466-1.1-c1-0-52
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 10-s + 3·11-s − 13-s + 16-s + 2·17-s − 20-s + 3·22-s − 6·23-s − 4·25-s − 26-s − 9·29-s + 5·31-s + 32-s + 2·34-s − 8·37-s − 40-s + 4·41-s + 3·44-s − 6·46-s − 4·50-s − 52-s − 53-s − 3·55-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 0.316·10-s + 0.904·11-s − 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.223·20-s + 0.639·22-s − 1.25·23-s − 4/5·25-s − 0.196·26-s − 1.67·29-s + 0.898·31-s + 0.176·32-s + 0.342·34-s − 1.31·37-s − 0.158·40-s + 0.624·41-s + 0.452·44-s − 0.884·46-s − 0.565·50-s − 0.138·52-s − 0.137·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.56297957280499, −16.08105429061533, −15.55988591504737, −14.88304890584195, −14.52647788145608, −13.84338982560398, −13.46127085067261, −12.61104800781003, −12.09549860643029, −11.74267542020267, −11.16293211470437, −10.40071133126735, −9.781864015961714, −9.194308083627193, −8.344103350864622, −7.745209803767053, −7.183491091242963, −6.461024912953475, −5.804597294040573, −5.243198742899364, −4.209075729602355, −3.935099330446181, −3.162549179701338, −2.169000107592157, −1.392087653229020, 0, 1.392087653229020, 2.169000107592157, 3.162549179701338, 3.935099330446181, 4.209075729602355, 5.243198742899364, 5.804597294040573, 6.461024912953475, 7.183491091242963, 7.745209803767053, 8.344103350864622, 9.194308083627193, 9.781864015961714, 10.40071133126735, 11.16293211470437, 11.74267542020267, 12.09549860643029, 12.61104800781003, 13.46127085067261, 13.84338982560398, 14.52647788145608, 14.88304890584195, 15.55988591504737, 16.08105429061533, 16.56297957280499

Graph of the $Z$-function along the critical line