Properties

Label 2-11466-1.1-c1-0-20
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 5·11-s + 13-s + 16-s + 7·17-s − 7·19-s − 5·22-s − 2·23-s − 5·25-s − 26-s + 9·29-s − 32-s − 7·34-s + 4·37-s + 7·38-s + 4·41-s + 2·43-s + 5·44-s + 2·46-s − 3·47-s + 5·50-s + 52-s − 53-s − 9·58-s + 7·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.50·11-s + 0.277·13-s + 1/4·16-s + 1.69·17-s − 1.60·19-s − 1.06·22-s − 0.417·23-s − 25-s − 0.196·26-s + 1.67·29-s − 0.176·32-s − 1.20·34-s + 0.657·37-s + 1.13·38-s + 0.624·41-s + 0.304·43-s + 0.753·44-s + 0.294·46-s − 0.437·47-s + 0.707·50-s + 0.138·52-s − 0.137·53-s − 1.18·58-s + 0.911·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.770247160\)
\(L(\frac12)\) \(\approx\) \(1.770247160\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.43221194200092, −16.20076528770762, −15.17318136609535, −14.91889540681716, −14.12126576806863, −13.86607239431073, −12.83421975851155, −12.14727149222674, −11.99784077954634, −11.14615417994453, −10.61604895811314, −9.879170145035301, −9.536285856765503, −8.769001329008798, −8.219545803524473, −7.710701720179328, −6.860750393194667, −6.203269137993797, −5.923687154713280, −4.743499327925045, −4.001654675362855, −3.378292978943410, −2.365089644103606, −1.504999616101305, −0.7321569013557583, 0.7321569013557583, 1.504999616101305, 2.365089644103606, 3.378292978943410, 4.001654675362855, 4.743499327925045, 5.923687154713280, 6.203269137993797, 6.860750393194667, 7.710701720179328, 8.219545803524473, 8.769001329008798, 9.536285856765503, 9.879170145035301, 10.61604895811314, 11.14615417994453, 11.99784077954634, 12.14727149222674, 12.83421975851155, 13.86607239431073, 14.12126576806863, 14.91889540681716, 15.17318136609535, 16.20076528770762, 16.43221194200092

Graph of the $Z$-function along the critical line