Properties

Label 2-11466-1.1-c1-0-11
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 13-s + 16-s + 6·17-s + 4·19-s − 6·23-s − 5·25-s + 26-s − 8·31-s − 32-s − 6·34-s + 2·37-s − 4·38-s − 4·43-s + 6·46-s + 6·47-s + 5·50-s − 52-s + 6·59-s − 2·61-s + 8·62-s + 64-s − 4·67-s + 6·68-s + 10·73-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 0.277·13-s + 1/4·16-s + 1.45·17-s + 0.917·19-s − 1.25·23-s − 25-s + 0.196·26-s − 1.43·31-s − 0.176·32-s − 1.02·34-s + 0.328·37-s − 0.648·38-s − 0.609·43-s + 0.884·46-s + 0.875·47-s + 0.707·50-s − 0.138·52-s + 0.781·59-s − 0.256·61-s + 1.01·62-s + 1/8·64-s − 0.488·67-s + 0.727·68-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.297666390\)
\(L(\frac12)\) \(\approx\) \(1.297666390\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.44553907172931, −16.09604213370029, −15.37764107327769, −14.80939726214759, −14.17792888476827, −13.74496448258758, −12.92482491937725, −12.15777770738053, −11.92912993290686, −11.22695902053414, −10.50405568878316, −9.908570703432551, −9.563331301793379, −8.880291079783424, −7.998051805762789, −7.691205635144370, −7.125433338926979, −6.173539959309209, −5.653919403613001, −5.017160700124632, −3.856543293576988, −3.393783985721077, −2.356843149538121, −1.610547786899652, −0.5918100691217246, 0.5918100691217246, 1.610547786899652, 2.356843149538121, 3.393783985721077, 3.856543293576988, 5.017160700124632, 5.653919403613001, 6.173539959309209, 7.125433338926979, 7.691205635144370, 7.998051805762789, 8.880291079783424, 9.563331301793379, 9.908570703432551, 10.50405568878316, 11.22695902053414, 11.92912993290686, 12.15777770738053, 12.92482491937725, 13.74496448258758, 14.17792888476827, 14.80939726214759, 15.37764107327769, 16.09604213370029, 16.44553907172931

Graph of the $Z$-function along the critical line