L(s) = 1 | + i·2-s − 3-s − 4-s + i·5-s − i·6-s − 7-s − i·8-s + 9-s − 10-s − 11-s + 12-s − i·13-s − i·14-s − i·15-s + 16-s − 5i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577·3-s − 0.5·4-s + 0.447i·5-s − 0.408i·6-s − 0.377·7-s − 0.353i·8-s + 0.333·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.277i·13-s − 0.267i·14-s − 0.258i·15-s + 0.250·16-s − 1.21i·17-s + ⋯ |
Λ(s)=(=(1110s/2ΓC(s)L(s)(0.986+0.164i)Λ(2−s)
Λ(s)=(=(1110s/2ΓC(s+1/2)L(s)(0.986+0.164i)Λ(1−s)
Degree: |
2 |
Conductor: |
1110
= 2⋅3⋅5⋅37
|
Sign: |
0.986+0.164i
|
Analytic conductor: |
8.86339 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1110(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1110, ( :1/2), 0.986+0.164i)
|
Particular Values
L(1) |
≈ |
0.9259428630 |
L(21) |
≈ |
0.9259428630 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+T |
| 5 | 1−iT |
| 37 | 1+(−6−i)T |
good | 7 | 1+T+7T2 |
| 11 | 1+T+11T2 |
| 13 | 1+iT−13T2 |
| 17 | 1+5iT−17T2 |
| 19 | 1+3iT−19T2 |
| 23 | 1+3iT−23T2 |
| 29 | 1−10iT−29T2 |
| 31 | 1+2iT−31T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+12iT−43T2 |
| 47 | 1−12T+47T2 |
| 53 | 1−11T+53T2 |
| 59 | 1+10iT−59T2 |
| 61 | 1+14iT−61T2 |
| 67 | 1−12T+67T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+T+73T2 |
| 79 | 1−10iT−79T2 |
| 83 | 1+3T+83T2 |
| 89 | 1−9iT−89T2 |
| 97 | 1−12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.757674592322395651360084876713, −9.023074740307522681850076441493, −8.020486131892934550098755552225, −6.99416720499669562100549753595, −6.72400727434630523911025153399, −5.51968528325553463368885747218, −4.96389623615838547188196016628, −3.73114384413749356116416006896, −2.56023766661685018531833096121, −0.52536425682019317544191150121,
1.11520569429418792601494087728, 2.38677319813039334606711147299, 3.78866922353619549736702948144, 4.46116264552764782255529051814, 5.66328319385818833104268411075, 6.19429555039558421062594892004, 7.52301015595131319283184415607, 8.303894586725900257113948758249, 9.262152701564750930883455918575, 10.02592590252124287993361174379