sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(1110, base_ring=CyclotomicField(2))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,0,1]))
pari: [g,chi] = znchar(Mod(961,1110))
Basic properties
Modulus: | \(1110\) | |
Conductor: | \(37\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(2\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | no, induced from \(\chi_{37}(36,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1110.h
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((371,667,631)\) → \((1,1,-1)\)
Values
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
\(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) |
Related number fields
Field of values: | \(\Q\) |
Fixed field: | \(\Q(\sqrt{37}) \) |