Properties

Label 2-10800-1.1-c1-0-41
Degree $2$
Conductor $10800$
Sign $1$
Analytic cond. $86.2384$
Root an. cond. $9.28646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 4·11-s + 6·13-s − 6·17-s + 19-s − 6·23-s + 10·29-s − 31-s + 11·37-s + 3·43-s + 8·47-s + 2·49-s − 12·53-s − 6·59-s + 5·61-s + 4·67-s − 2·71-s − 9·73-s + 12·77-s + 5·79-s + 18·83-s − 2·89-s + 18·91-s − 5·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.13·7-s + 1.20·11-s + 1.66·13-s − 1.45·17-s + 0.229·19-s − 1.25·23-s + 1.85·29-s − 0.179·31-s + 1.80·37-s + 0.457·43-s + 1.16·47-s + 2/7·49-s − 1.64·53-s − 0.781·59-s + 0.640·61-s + 0.488·67-s − 0.237·71-s − 1.05·73-s + 1.36·77-s + 0.562·79-s + 1.97·83-s − 0.211·89-s + 1.88·91-s − 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10800\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(86.2384\)
Root analytic conductor: \(9.28646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.083352453\)
\(L(\frac12)\) \(\approx\) \(3.083352453\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31295571358661, −16.04910004928765, −15.41295102634866, −14.78268442899146, −14.08756615578467, −13.87483037858061, −13.21973676827234, −12.40343450293603, −11.78875816140383, −11.25718824192497, −10.93481892104987, −10.20204273817050, −9.249038641369247, −8.908231591568904, −8.162354331070432, −7.840085155265403, −6.684746240950374, −6.341544757048100, −5.714031110261260, −4.531460183819603, −4.349454042180934, −3.528782242864353, −2.436863577005057, −1.592227899926598, −0.8982115126896610, 0.8982115126896610, 1.592227899926598, 2.436863577005057, 3.528782242864353, 4.349454042180934, 4.531460183819603, 5.714031110261260, 6.341544757048100, 6.684746240950374, 7.840085155265403, 8.162354331070432, 8.908231591568904, 9.249038641369247, 10.20204273817050, 10.93481892104987, 11.25718824192497, 11.78875816140383, 12.40343450293603, 13.21973676827234, 13.87483037858061, 14.08756615578467, 14.78268442899146, 15.41295102634866, 16.04910004928765, 16.31295571358661

Graph of the $Z$-function along the critical line