Properties

Label 2-106470-1.1-c1-0-103
Degree $2$
Conductor $106470$
Sign $-1$
Analytic cond. $850.167$
Root an. cond. $29.1576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 7-s + 8-s + 10-s − 5·11-s − 14-s + 16-s + 6·17-s − 8·19-s + 20-s − 5·22-s − 3·23-s + 25-s − 28-s + 8·29-s − 9·31-s + 32-s + 6·34-s − 35-s + 7·37-s − 8·38-s + 40-s − 7·41-s − 12·43-s − 5·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s + 0.316·10-s − 1.50·11-s − 0.267·14-s + 1/4·16-s + 1.45·17-s − 1.83·19-s + 0.223·20-s − 1.06·22-s − 0.625·23-s + 1/5·25-s − 0.188·28-s + 1.48·29-s − 1.61·31-s + 0.176·32-s + 1.02·34-s − 0.169·35-s + 1.15·37-s − 1.29·38-s + 0.158·40-s − 1.09·41-s − 1.82·43-s − 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 106470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(106470\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(850.167\)
Root analytic conductor: \(29.1576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 106470,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.95525348680971, −13.19871483293764, −13.07999453102113, −12.62707643802290, −12.18512673141443, −11.52048402702493, −11.05306855724927, −10.35025005326084, −10.10004742478135, −9.875784758462024, −8.903351729755336, −8.289782120672163, −8.058348413546659, −7.394285020438373, −6.636893148756099, −6.441076641641873, −5.700673671633689, −5.188115916818463, −4.977753423519565, −4.028758082486466, −3.597549992848832, −2.941709386976275, −2.297371597952966, −1.947660163926715, −0.8945466039821658, 0, 0.8945466039821658, 1.947660163926715, 2.297371597952966, 2.941709386976275, 3.597549992848832, 4.028758082486466, 4.977753423519565, 5.188115916818463, 5.700673671633689, 6.441076641641873, 6.636893148756099, 7.394285020438373, 8.058348413546659, 8.289782120672163, 8.903351729755336, 9.875784758462024, 10.10004742478135, 10.35025005326084, 11.05306855724927, 11.52048402702493, 12.18512673141443, 12.62707643802290, 13.07999453102113, 13.19871483293764, 13.95525348680971

Graph of the $Z$-function along the critical line