L(s) = 1 | + (−0.366 − 1.36i)2-s + 2i·3-s + (−1.73 + i)4-s + 3.46i·5-s + (2.73 − 0.732i)6-s − 1.26·7-s + (2 + 1.99i)8-s − 9-s + (4.73 − 1.26i)10-s − 4.73i·11-s + (−2 − 3.46i)12-s + i·13-s + (0.464 + 1.73i)14-s − 6.92·15-s + (1.99 − 3.46i)16-s + 5.46·17-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + 1.15i·3-s + (−0.866 + 0.5i)4-s + 1.54i·5-s + (1.11 − 0.298i)6-s − 0.479·7-s + (0.707 + 0.707i)8-s − 0.333·9-s + (1.49 − 0.400i)10-s − 1.42i·11-s + (−0.577 − 0.999i)12-s + 0.277i·13-s + (0.124 + 0.462i)14-s − 1.78·15-s + (0.499 − 0.866i)16-s + 1.32·17-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)(0.707−0.707i)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
0.830444 |
Root analytic conductor: |
0.911287 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ104(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :1/2), 0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.756322+0.313279i |
L(21) |
≈ |
0.756322+0.313279i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366+1.36i)T |
| 13 | 1−iT |
good | 3 | 1−2iT−3T2 |
| 5 | 1−3.46iT−5T2 |
| 7 | 1+1.26T+7T2 |
| 11 | 1+4.73iT−11T2 |
| 17 | 1−5.46T+17T2 |
| 19 | 1−0.732iT−19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+6.73T+31T2 |
| 37 | 1+8.92iT−37T2 |
| 41 | 1−8.92T+41T2 |
| 43 | 1+0.535iT−43T2 |
| 47 | 1−6.73T+47T2 |
| 53 | 1+2.92iT−53T2 |
| 59 | 1+10.1iT−59T2 |
| 61 | 1−2.92iT−61T2 |
| 67 | 1−0.732iT−67T2 |
| 71 | 1+8.19T+71T2 |
| 73 | 1+7.46T+73T2 |
| 79 | 1−5.46T+79T2 |
| 83 | 1−3.26iT−83T2 |
| 89 | 1+17.3T+89T2 |
| 97 | 1−6.39T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.13138761130749281911969637587, −12.74559147605110047710515783750, −11.22936593423537180748242896467, −10.80347344142736103279795786413, −9.927458358212439716120657493433, −8.999722199462404836567638118216, −7.39930033665639993270289510149, −5.65706916745960590564750799286, −3.75203968154316350580012571200, −3.06320050117788563455232785257,
1.23000020128735635730991750156, 4.56746430097494365243897227587, 5.76050998433423880724887136900, 7.15368383405723015950202175585, 7.88710400559734548488988068574, 9.093944912592433757917183976042, 9.975598714293025556706726442622, 12.22471881712449308840253616255, 12.77478134770588876714157957757, 13.41041458260834501861777971835