Properties

Label 2-101568-1.1-c1-0-1
Degree $2$
Conductor $101568$
Sign $1$
Analytic cond. $811.024$
Root an. cond. $28.4784$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 4·11-s + 6·13-s − 4·17-s − 2·19-s − 2·21-s − 5·25-s + 27-s − 2·29-s − 4·31-s − 4·33-s + 2·37-s + 6·39-s + 2·41-s − 10·43-s − 3·49-s − 4·51-s − 12·53-s − 2·57-s − 12·59-s − 6·61-s − 2·63-s + 10·67-s − 8·71-s − 14·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 1.20·11-s + 1.66·13-s − 0.970·17-s − 0.458·19-s − 0.436·21-s − 25-s + 0.192·27-s − 0.371·29-s − 0.718·31-s − 0.696·33-s + 0.328·37-s + 0.960·39-s + 0.312·41-s − 1.52·43-s − 3/7·49-s − 0.560·51-s − 1.64·53-s − 0.264·57-s − 1.56·59-s − 0.768·61-s − 0.251·63-s + 1.22·67-s − 0.949·71-s − 1.63·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101568\)    =    \(2^{6} \cdot 3 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(811.024\)
Root analytic conductor: \(28.4784\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 101568,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7094505497\)
\(L(\frac12)\) \(\approx\) \(0.7094505497\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56665915065462, −13.14505903560424, −13.10011019878189, −12.48194449756724, −11.72985641996548, −11.18808345507802, −10.72443605460741, −10.41515768477572, −9.651461239484754, −9.304841438785193, −8.785372013069369, −8.195069124925486, −7.902569638272512, −7.273658715704551, −6.545532198668732, −6.216889311632087, −5.706562539556510, −4.951399328279803, −4.351282889741778, −3.743829868166645, −3.236631562469688, −2.750774279784863, −1.920071555549694, −1.485444283788638, −0.2389043366507000, 0.2389043366507000, 1.485444283788638, 1.920071555549694, 2.750774279784863, 3.236631562469688, 3.743829868166645, 4.351282889741778, 4.951399328279803, 5.706562539556510, 6.216889311632087, 6.545532198668732, 7.273658715704551, 7.902569638272512, 8.195069124925486, 8.785372013069369, 9.304841438785193, 9.651461239484754, 10.41515768477572, 10.72443605460741, 11.18808345507802, 11.72985641996548, 12.48194449756724, 13.10011019878189, 13.14505903560424, 13.56665915065462

Graph of the $Z$-function along the critical line