Properties

Label 16-882e8-1.1-c1e8-0-14
Degree $16$
Conductor $3.662\times 10^{23}$
Sign $1$
Analytic cond. $6.05292\times 10^{6}$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 36·4-s + 120·8-s + 8·11-s + 330·16-s + 64·22-s − 8·23-s + 4·25-s + 16·29-s + 792·32-s − 16·37-s − 8·43-s + 288·44-s − 64·46-s + 32·50-s − 16·53-s + 128·58-s + 1.71e3·64-s + 72·67-s + 48·71-s − 128·74-s + 16·79-s + 9·81-s − 64·86-s + 960·88-s − 288·92-s + 144·100-s + ⋯
L(s)  = 1  + 5.65·2-s + 18·4-s + 42.4·8-s + 2.41·11-s + 82.5·16-s + 13.6·22-s − 1.66·23-s + 4/5·25-s + 2.97·29-s + 140.·32-s − 2.63·37-s − 1.21·43-s + 43.4·44-s − 9.43·46-s + 4.52·50-s − 2.19·53-s + 16.8·58-s + 214.5·64-s + 8.79·67-s + 5.69·71-s − 14.8·74-s + 1.80·79-s + 81-s − 6.90·86-s + 102.·88-s − 30.0·92-s + 72/5·100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{16} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(6.05292\times 10^{6}\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{16} \cdot 7^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(836.9101097\)
\(L(\frac12)\) \(\approx\) \(836.9101097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T )^{8} \)
3 \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
7 \( 1 \)
good5 \( 1 - 4 T^{2} + 2 p T^{4} + 176 T^{6} - 989 T^{8} + 176 p^{2} T^{10} + 2 p^{5} T^{12} - 4 p^{6} T^{14} + p^{8} T^{16} \)
11 \( ( 1 - 4 T - 7 T^{2} - 4 T^{3} + 232 T^{4} - 4 p T^{5} - 7 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
13 \( 1 - 4 T^{2} + 106 T^{4} + 1712 T^{6} - 23165 T^{8} + 1712 p^{2} T^{10} + 106 p^{4} T^{12} - 4 p^{6} T^{14} + p^{8} T^{16} \)
17 \( 1 + 8 T^{2} - 455 T^{4} - 472 T^{6} + 167344 T^{8} - 472 p^{2} T^{10} - 455 p^{4} T^{12} + 8 p^{6} T^{14} + p^{8} T^{16} \)
19 \( 1 - 48 T^{2} + 1033 T^{4} - 26352 T^{6} + 653376 T^{8} - 26352 p^{2} T^{10} + 1033 p^{4} T^{12} - 48 p^{6} T^{14} + p^{8} T^{16} \)
23 \( ( 1 + 4 T - 22 T^{2} - 32 T^{3} + 547 T^{4} - 32 p T^{5} - 22 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 4 T - 13 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 76 T^{2} + 2934 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 + 8 T - 14 T^{2} + 32 T^{3} + 2347 T^{4} + 32 p T^{5} - 14 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( 1 - 88 T^{2} + 3769 T^{4} - 53944 T^{6} - 42800 T^{8} - 53944 p^{2} T^{10} + 3769 p^{4} T^{12} - 88 p^{6} T^{14} + p^{8} T^{16} \)
43 \( ( 1 + 4 T - 71 T^{2} + 4 T^{3} + 5032 T^{4} + 4 p T^{5} - 71 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( ( 1 + 76 T^{2} + 2790 T^{4} + 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 + 8 T - 10 T^{2} - 256 T^{3} - 725 T^{4} - 256 p T^{5} - 10 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
59 \( ( 1 + 160 T^{2} + 12039 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 + 36 T^{2} + 4694 T^{4} + 36 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 18 T + 203 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{4} \)
71 \( ( 1 - 12 T + 166 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{4} \)
73 \( 1 - 216 T^{2} + 24409 T^{4} - 2503224 T^{6} + 217900944 T^{8} - 2503224 p^{2} T^{10} + 24409 p^{4} T^{12} - 216 p^{6} T^{14} + p^{8} T^{16} \)
79 \( ( 1 - 4 T + 114 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{4} \)
83 \( 1 + 32 T^{2} + 6190 T^{4} - 606208 T^{6} - 27825101 T^{8} - 606208 p^{2} T^{10} + 6190 p^{4} T^{12} + 32 p^{6} T^{14} + p^{8} T^{16} \)
89 \( ( 1 - 128 T^{2} + 8463 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( 1 - 24 T^{2} + 3289 T^{4} + 516744 T^{6} - 86588496 T^{8} + 516744 p^{2} T^{10} + 3289 p^{4} T^{12} - 24 p^{6} T^{14} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.44841249142198992604497987155, −4.18699049159293504617610676629, −4.05353120972940301898096031622, −3.84838826292867899419254302013, −3.81636229255907107305742194651, −3.72806045049423439004295266105, −3.68651213930141926315831767197, −3.65361718003387974963259365383, −3.25960743646712911531042217440, −3.24896514804327070167305097754, −3.21637288951050862899342757740, −3.19067462473691864374738073886, −3.05491172677448435731186771378, −2.44759619915682041507442755616, −2.40232177895859197406156903881, −2.23529630998355580012508814865, −2.21394590791337583952245270181, −2.05326011883508828501889527970, −2.04368538913935319768105304537, −2.01059945447962417117657110988, −1.48543453054798297276431184004, −1.18370013757149076263716823460, −1.02547229819349956648295903455, −0.992516637622492011154162764369, −0.67189069398895597918953258904, 0.67189069398895597918953258904, 0.992516637622492011154162764369, 1.02547229819349956648295903455, 1.18370013757149076263716823460, 1.48543453054798297276431184004, 2.01059945447962417117657110988, 2.04368538913935319768105304537, 2.05326011883508828501889527970, 2.21394590791337583952245270181, 2.23529630998355580012508814865, 2.40232177895859197406156903881, 2.44759619915682041507442755616, 3.05491172677448435731186771378, 3.19067462473691864374738073886, 3.21637288951050862899342757740, 3.24896514804327070167305097754, 3.25960743646712911531042217440, 3.65361718003387974963259365383, 3.68651213930141926315831767197, 3.72806045049423439004295266105, 3.81636229255907107305742194651, 3.84838826292867899419254302013, 4.05353120972940301898096031622, 4.18699049159293504617610676629, 4.44841249142198992604497987155

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.