Properties

Label 882.2.e.s.655.4
Level $882$
Weight $2$
Character 882.655
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(373,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.373"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 655.4
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 882.655
Dual form 882.2.e.s.373.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.67303 + 0.448288i) q^{3} +1.00000 q^{4} +(-1.93185 + 3.34607i) q^{5} +(1.67303 + 0.448288i) q^{6} +1.00000 q^{8} +(2.59808 + 1.50000i) q^{9} +(-1.93185 + 3.34607i) q^{10} +(1.86603 + 3.23205i) q^{11} +(1.67303 + 0.448288i) q^{12} +(-3.34607 - 5.79555i) q^{13} +(-4.73205 + 4.73205i) q^{15} +1.00000 q^{16} +(-2.70831 + 4.69093i) q^{17} +(2.59808 + 1.50000i) q^{18} +(1.48356 + 2.56961i) q^{19} +(-1.93185 + 3.34607i) q^{20} +(1.86603 + 3.23205i) q^{22} +(0.732051 - 1.26795i) q^{23} +(1.67303 + 0.448288i) q^{24} +(-4.96410 - 8.59808i) q^{25} +(-3.34607 - 5.79555i) q^{26} +(3.67423 + 3.67423i) q^{27} +(2.00000 - 3.46410i) q^{29} +(-4.73205 + 4.73205i) q^{30} +1.79315 q^{31} +1.00000 q^{32} +(1.67303 + 6.24384i) q^{33} +(-2.70831 + 4.69093i) q^{34} +(2.59808 + 1.50000i) q^{36} +(-0.267949 - 0.464102i) q^{37} +(1.48356 + 2.56961i) q^{38} +(-3.00000 - 11.1962i) q^{39} +(-1.93185 + 3.34607i) q^{40} +(0.637756 + 1.10463i) q^{41} +(-1.86603 + 3.23205i) q^{43} +(1.86603 + 3.23205i) q^{44} +(-10.0382 + 5.79555i) q^{45} +(0.732051 - 1.26795i) q^{46} +10.5558 q^{47} +(1.67303 + 0.448288i) q^{48} +(-4.96410 - 8.59808i) q^{50} +(-6.63397 + 6.63397i) q^{51} +(-3.34607 - 5.79555i) q^{52} +(1.46410 - 2.53590i) q^{53} +(3.67423 + 3.67423i) q^{54} -14.4195 q^{55} +(1.33013 + 4.96410i) q^{57} +(2.00000 - 3.46410i) q^{58} -8.62398 q^{59} +(-4.73205 + 4.73205i) q^{60} +6.96953 q^{61} +1.79315 q^{62} +1.00000 q^{64} +25.8564 q^{65} +(1.67303 + 6.24384i) q^{66} +5.53590 q^{67} +(-2.70831 + 4.69093i) q^{68} +(1.79315 - 1.79315i) q^{69} +2.53590 q^{71} +(2.59808 + 1.50000i) q^{72} +(3.41542 - 5.91567i) q^{73} +(-0.267949 - 0.464102i) q^{74} +(-4.45069 - 16.6102i) q^{75} +(1.48356 + 2.56961i) q^{76} +(-3.00000 - 11.1962i) q^{78} -4.92820 q^{79} +(-1.93185 + 3.34607i) q^{80} +(4.50000 + 7.79423i) q^{81} +(0.637756 + 1.10463i) q^{82} +(8.95215 - 15.5056i) q^{83} +(-10.4641 - 18.1244i) q^{85} +(-1.86603 + 3.23205i) q^{86} +(4.89898 - 4.89898i) q^{87} +(1.86603 + 3.23205i) q^{88} +(-3.53553 - 6.12372i) q^{89} +(-10.0382 + 5.79555i) q^{90} +(0.732051 - 1.26795i) q^{92} +(3.00000 + 0.803848i) q^{93} +10.5558 q^{94} -11.4641 q^{95} +(1.67303 + 0.448288i) q^{96} +(2.94855 - 5.10703i) q^{97} +11.1962i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} + 8 q^{11} - 24 q^{15} + 8 q^{16} + 8 q^{22} - 8 q^{23} - 12 q^{25} + 16 q^{29} - 24 q^{30} + 8 q^{32} - 16 q^{37} - 24 q^{39} - 8 q^{43} + 8 q^{44} - 8 q^{46} - 12 q^{50}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.67303 + 0.448288i 0.965926 + 0.258819i
\(4\) 1.00000 0.500000
\(5\) −1.93185 + 3.34607i −0.863950 + 1.49641i 0.00413535 + 0.999991i \(0.498684\pi\)
−0.868086 + 0.496414i \(0.834650\pi\)
\(6\) 1.67303 + 0.448288i 0.683013 + 0.183013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 2.59808 + 1.50000i 0.866025 + 0.500000i
\(10\) −1.93185 + 3.34607i −0.610905 + 1.05812i
\(11\) 1.86603 + 3.23205i 0.562628 + 0.974500i 0.997266 + 0.0738948i \(0.0235429\pi\)
−0.434638 + 0.900605i \(0.643124\pi\)
\(12\) 1.67303 + 0.448288i 0.482963 + 0.129410i
\(13\) −3.34607 5.79555i −0.928032 1.60740i −0.786612 0.617448i \(-0.788167\pi\)
−0.141420 0.989950i \(-0.545167\pi\)
\(14\) 0 0
\(15\) −4.73205 + 4.73205i −1.22181 + 1.22181i
\(16\) 1.00000 0.250000
\(17\) −2.70831 + 4.69093i −0.656861 + 1.13772i 0.324562 + 0.945864i \(0.394783\pi\)
−0.981424 + 0.191853i \(0.938550\pi\)
\(18\) 2.59808 + 1.50000i 0.612372 + 0.353553i
\(19\) 1.48356 + 2.56961i 0.340353 + 0.589509i 0.984498 0.175395i \(-0.0561201\pi\)
−0.644145 + 0.764903i \(0.722787\pi\)
\(20\) −1.93185 + 3.34607i −0.431975 + 0.748203i
\(21\) 0 0
\(22\) 1.86603 + 3.23205i 0.397838 + 0.689076i
\(23\) 0.732051 1.26795i 0.152643 0.264386i −0.779555 0.626334i \(-0.784555\pi\)
0.932198 + 0.361948i \(0.117888\pi\)
\(24\) 1.67303 + 0.448288i 0.341506 + 0.0915064i
\(25\) −4.96410 8.59808i −0.992820 1.71962i
\(26\) −3.34607 5.79555i −0.656217 1.13660i
\(27\) 3.67423 + 3.67423i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) −4.73205 + 4.73205i −0.863950 + 0.863950i
\(31\) 1.79315 0.322059 0.161030 0.986950i \(-0.448519\pi\)
0.161030 + 0.986950i \(0.448519\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.67303 + 6.24384i 0.291238 + 1.08691i
\(34\) −2.70831 + 4.69093i −0.464471 + 0.804488i
\(35\) 0 0
\(36\) 2.59808 + 1.50000i 0.433013 + 0.250000i
\(37\) −0.267949 0.464102i −0.0440506 0.0762978i 0.843159 0.537664i \(-0.180693\pi\)
−0.887210 + 0.461366i \(0.847360\pi\)
\(38\) 1.48356 + 2.56961i 0.240666 + 0.416845i
\(39\) −3.00000 11.1962i −0.480384 1.79282i
\(40\) −1.93185 + 3.34607i −0.305453 + 0.529059i
\(41\) 0.637756 + 1.10463i 0.0996008 + 0.172514i 0.911519 0.411257i \(-0.134910\pi\)
−0.811919 + 0.583771i \(0.801577\pi\)
\(42\) 0 0
\(43\) −1.86603 + 3.23205i −0.284566 + 0.492883i −0.972504 0.232887i \(-0.925183\pi\)
0.687938 + 0.725770i \(0.258516\pi\)
\(44\) 1.86603 + 3.23205i 0.281314 + 0.487250i
\(45\) −10.0382 + 5.79555i −1.49641 + 0.863950i
\(46\) 0.732051 1.26795i 0.107935 0.186949i
\(47\) 10.5558 1.53973 0.769863 0.638209i \(-0.220324\pi\)
0.769863 + 0.638209i \(0.220324\pi\)
\(48\) 1.67303 + 0.448288i 0.241481 + 0.0647048i
\(49\) 0 0
\(50\) −4.96410 8.59808i −0.702030 1.21595i
\(51\) −6.63397 + 6.63397i −0.928942 + 0.928942i
\(52\) −3.34607 5.79555i −0.464016 0.803699i
\(53\) 1.46410 2.53590i 0.201110 0.348332i −0.747776 0.663951i \(-0.768879\pi\)
0.948886 + 0.315618i \(0.102212\pi\)
\(54\) 3.67423 + 3.67423i 0.500000 + 0.500000i
\(55\) −14.4195 −1.94433
\(56\) 0 0
\(57\) 1.33013 + 4.96410i 0.176180 + 0.657511i
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) −8.62398 −1.12275 −0.561373 0.827563i \(-0.689727\pi\)
−0.561373 + 0.827563i \(0.689727\pi\)
\(60\) −4.73205 + 4.73205i −0.610905 + 0.610905i
\(61\) 6.96953 0.892357 0.446179 0.894944i \(-0.352785\pi\)
0.446179 + 0.894944i \(0.352785\pi\)
\(62\) 1.79315 0.227730
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 25.8564 3.20709
\(66\) 1.67303 + 6.24384i 0.205936 + 0.768564i
\(67\) 5.53590 0.676318 0.338159 0.941089i \(-0.390196\pi\)
0.338159 + 0.941089i \(0.390196\pi\)
\(68\) −2.70831 + 4.69093i −0.328431 + 0.568859i
\(69\) 1.79315 1.79315i 0.215870 0.215870i
\(70\) 0 0
\(71\) 2.53590 0.300956 0.150478 0.988613i \(-0.451919\pi\)
0.150478 + 0.988613i \(0.451919\pi\)
\(72\) 2.59808 + 1.50000i 0.306186 + 0.176777i
\(73\) 3.41542 5.91567i 0.399744 0.692377i −0.593950 0.804502i \(-0.702432\pi\)
0.993694 + 0.112125i \(0.0357656\pi\)
\(74\) −0.267949 0.464102i −0.0311485 0.0539507i
\(75\) −4.45069 16.6102i −0.513922 1.91798i
\(76\) 1.48356 + 2.56961i 0.170176 + 0.294754i
\(77\) 0 0
\(78\) −3.00000 11.1962i −0.339683 1.26771i
\(79\) −4.92820 −0.554466 −0.277233 0.960803i \(-0.589417\pi\)
−0.277233 + 0.960803i \(0.589417\pi\)
\(80\) −1.93185 + 3.34607i −0.215988 + 0.374101i
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 0.637756 + 1.10463i 0.0704284 + 0.121986i
\(83\) 8.95215 15.5056i 0.982626 1.70196i 0.330583 0.943777i \(-0.392755\pi\)
0.652043 0.758182i \(-0.273912\pi\)
\(84\) 0 0
\(85\) −10.4641 18.1244i −1.13499 1.96586i
\(86\) −1.86603 + 3.23205i −0.201219 + 0.348521i
\(87\) 4.89898 4.89898i 0.525226 0.525226i
\(88\) 1.86603 + 3.23205i 0.198919 + 0.344538i
\(89\) −3.53553 6.12372i −0.374766 0.649113i 0.615526 0.788116i \(-0.288944\pi\)
−0.990292 + 0.139003i \(0.955610\pi\)
\(90\) −10.0382 + 5.79555i −1.05812 + 0.610905i
\(91\) 0 0
\(92\) 0.732051 1.26795i 0.0763216 0.132193i
\(93\) 3.00000 + 0.803848i 0.311086 + 0.0833551i
\(94\) 10.5558 1.08875
\(95\) −11.4641 −1.17619
\(96\) 1.67303 + 0.448288i 0.170753 + 0.0457532i
\(97\) 2.94855 5.10703i 0.299379 0.518540i −0.676615 0.736337i \(-0.736554\pi\)
0.975994 + 0.217797i \(0.0698870\pi\)
\(98\) 0 0
\(99\) 11.1962i 1.12526i
\(100\) −4.96410 8.59808i −0.496410 0.859808i
\(101\) −2.44949 4.24264i −0.243733 0.422159i 0.718041 0.696000i \(-0.245039\pi\)
−0.961775 + 0.273842i \(0.911706\pi\)
\(102\) −6.63397 + 6.63397i −0.656861 + 0.656861i
\(103\) −3.72500 + 6.45189i −0.367035 + 0.635724i −0.989101 0.147241i \(-0.952961\pi\)
0.622065 + 0.782965i \(0.286294\pi\)
\(104\) −3.34607 5.79555i −0.328109 0.568301i
\(105\) 0 0
\(106\) 1.46410 2.53590i 0.142206 0.246308i
\(107\) −1.69615 2.93782i −0.163973 0.284010i 0.772317 0.635237i \(-0.219098\pi\)
−0.936290 + 0.351227i \(0.885764\pi\)
\(108\) 3.67423 + 3.67423i 0.353553 + 0.353553i
\(109\) 4.46410 7.73205i 0.427583 0.740596i −0.569074 0.822286i \(-0.692698\pi\)
0.996658 + 0.0816899i \(0.0260317\pi\)
\(110\) −14.4195 −1.37485
\(111\) −0.240237 0.896575i −0.0228023 0.0850992i
\(112\) 0 0
\(113\) −3.46410 6.00000i −0.325875 0.564433i 0.655814 0.754923i \(-0.272326\pi\)
−0.981689 + 0.190490i \(0.938992\pi\)
\(114\) 1.33013 + 4.96410i 0.124578 + 0.464931i
\(115\) 2.82843 + 4.89898i 0.263752 + 0.456832i
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 20.0764i 1.85606i
\(118\) −8.62398 −0.793902
\(119\) 0 0
\(120\) −4.73205 + 4.73205i −0.431975 + 0.431975i
\(121\) −1.46410 + 2.53590i −0.133100 + 0.230536i
\(122\) 6.96953 0.630992
\(123\) 0.571797 + 2.13397i 0.0515572 + 0.192414i
\(124\) 1.79315 0.161030
\(125\) 19.0411 1.70309
\(126\) 0 0
\(127\) 6.53590 0.579967 0.289984 0.957032i \(-0.406350\pi\)
0.289984 + 0.957032i \(0.406350\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.57081 + 4.57081i −0.402437 + 0.402437i
\(130\) 25.8564 2.26776
\(131\) −3.01790 + 5.22715i −0.263675 + 0.456698i −0.967216 0.253957i \(-0.918268\pi\)
0.703541 + 0.710655i \(0.251601\pi\)
\(132\) 1.67303 + 6.24384i 0.145619 + 0.543457i
\(133\) 0 0
\(134\) 5.53590 0.478229
\(135\) −19.3923 + 5.19615i −1.66902 + 0.447214i
\(136\) −2.70831 + 4.69093i −0.232236 + 0.402244i
\(137\) 4.33013 + 7.50000i 0.369948 + 0.640768i 0.989557 0.144142i \(-0.0460423\pi\)
−0.619609 + 0.784910i \(0.712709\pi\)
\(138\) 1.79315 1.79315i 0.152643 0.152643i
\(139\) 8.17569 + 14.1607i 0.693453 + 1.20110i 0.970699 + 0.240297i \(0.0772450\pi\)
−0.277246 + 0.960799i \(0.589422\pi\)
\(140\) 0 0
\(141\) 17.6603 + 4.73205i 1.48726 + 0.398511i
\(142\) 2.53590 0.212808
\(143\) 12.4877 21.6293i 1.04427 1.80873i
\(144\) 2.59808 + 1.50000i 0.216506 + 0.125000i
\(145\) 7.72741 + 13.3843i 0.641726 + 1.11150i
\(146\) 3.41542 5.91567i 0.282662 0.489585i
\(147\) 0 0
\(148\) −0.267949 0.464102i −0.0220253 0.0381489i
\(149\) −4.53590 + 7.85641i −0.371595 + 0.643622i −0.989811 0.142386i \(-0.954522\pi\)
0.618216 + 0.786008i \(0.287856\pi\)
\(150\) −4.45069 16.6102i −0.363397 1.35622i
\(151\) 1.19615 + 2.07180i 0.0973415 + 0.168600i 0.910583 0.413325i \(-0.135633\pi\)
−0.813242 + 0.581926i \(0.802299\pi\)
\(152\) 1.48356 + 2.56961i 0.120333 + 0.208423i
\(153\) −14.0728 + 8.12493i −1.13772 + 0.656861i
\(154\) 0 0
\(155\) −3.46410 + 6.00000i −0.278243 + 0.481932i
\(156\) −3.00000 11.1962i −0.240192 0.896410i
\(157\) 4.62158 0.368842 0.184421 0.982847i \(-0.440959\pi\)
0.184421 + 0.982847i \(0.440959\pi\)
\(158\) −4.92820 −0.392067
\(159\) 3.58630 3.58630i 0.284412 0.284412i
\(160\) −1.93185 + 3.34607i −0.152726 + 0.264530i
\(161\) 0 0
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) −10.6603 18.4641i −0.834976 1.44622i −0.894050 0.447966i \(-0.852148\pi\)
0.0590748 0.998254i \(-0.481185\pi\)
\(164\) 0.637756 + 1.10463i 0.0498004 + 0.0862568i
\(165\) −24.1244 6.46410i −1.87808 0.503230i
\(166\) 8.95215 15.5056i 0.694822 1.20347i
\(167\) −10.5558 18.2832i −0.816835 1.41480i −0.908003 0.418964i \(-0.862393\pi\)
0.0911679 0.995836i \(-0.470940\pi\)
\(168\) 0 0
\(169\) −15.8923 + 27.5263i −1.22248 + 2.11741i
\(170\) −10.4641 18.1244i −0.802560 1.39007i
\(171\) 8.90138i 0.680706i
\(172\) −1.86603 + 3.23205i −0.142283 + 0.246442i
\(173\) 1.79315 0.136331 0.0681654 0.997674i \(-0.478285\pi\)
0.0681654 + 0.997674i \(0.478285\pi\)
\(174\) 4.89898 4.89898i 0.371391 0.371391i
\(175\) 0 0
\(176\) 1.86603 + 3.23205i 0.140657 + 0.243625i
\(177\) −14.4282 3.86603i −1.08449 0.290588i
\(178\) −3.53553 6.12372i −0.264999 0.458993i
\(179\) −9.46410 + 16.3923i −0.707380 + 1.22522i 0.258446 + 0.966026i \(0.416790\pi\)
−0.965826 + 0.259193i \(0.916544\pi\)
\(180\) −10.0382 + 5.79555i −0.748203 + 0.431975i
\(181\) −16.9706 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(182\) 0 0
\(183\) 11.6603 + 3.12436i 0.861951 + 0.230959i
\(184\) 0.732051 1.26795i 0.0539675 0.0934745i
\(185\) 2.07055 0.152230
\(186\) 3.00000 + 0.803848i 0.219971 + 0.0589410i
\(187\) −20.2151 −1.47827
\(188\) 10.5558 0.769863
\(189\) 0 0
\(190\) −11.4641 −0.831693
\(191\) 1.07180 0.0775525 0.0387762 0.999248i \(-0.487654\pi\)
0.0387762 + 0.999248i \(0.487654\pi\)
\(192\) 1.67303 + 0.448288i 0.120741 + 0.0323524i
\(193\) −23.0526 −1.65936 −0.829680 0.558240i \(-0.811477\pi\)
−0.829680 + 0.558240i \(0.811477\pi\)
\(194\) 2.94855 5.10703i 0.211693 0.366663i
\(195\) 43.2586 + 11.5911i 3.09781 + 0.830057i
\(196\) 0 0
\(197\) −3.07180 −0.218856 −0.109428 0.993995i \(-0.534902\pi\)
−0.109428 + 0.993995i \(0.534902\pi\)
\(198\) 11.1962i 0.795676i
\(199\) 8.90138 15.4176i 0.631002 1.09293i −0.356345 0.934355i \(-0.615977\pi\)
0.987347 0.158574i \(-0.0506895\pi\)
\(200\) −4.96410 8.59808i −0.351015 0.607976i
\(201\) 9.26174 + 2.48168i 0.653273 + 0.175044i
\(202\) −2.44949 4.24264i −0.172345 0.298511i
\(203\) 0 0
\(204\) −6.63397 + 6.63397i −0.464471 + 0.464471i
\(205\) −4.92820 −0.344201
\(206\) −3.72500 + 6.45189i −0.259533 + 0.449525i
\(207\) 3.80385 2.19615i 0.264386 0.152643i
\(208\) −3.34607 5.79555i −0.232008 0.401849i
\(209\) −5.53674 + 9.58991i −0.382984 + 0.663348i
\(210\) 0 0
\(211\) −2.53590 4.39230i −0.174578 0.302379i 0.765437 0.643511i \(-0.222523\pi\)
−0.940015 + 0.341132i \(0.889190\pi\)
\(212\) 1.46410 2.53590i 0.100555 0.174166i
\(213\) 4.24264 + 1.13681i 0.290701 + 0.0778931i
\(214\) −1.69615 2.93782i −0.115947 0.200825i
\(215\) −7.20977 12.4877i −0.491702 0.851653i
\(216\) 3.67423 + 3.67423i 0.250000 + 0.250000i
\(217\) 0 0
\(218\) 4.46410 7.73205i 0.302347 0.523681i
\(219\) 8.36603 8.36603i 0.565324 0.565324i
\(220\) −14.4195 −0.972165
\(221\) 36.2487 2.43835
\(222\) −0.240237 0.896575i −0.0161236 0.0601742i
\(223\) 13.3843 23.1822i 0.896276 1.55240i 0.0640595 0.997946i \(-0.479595\pi\)
0.832217 0.554450i \(-0.187071\pi\)
\(224\) 0 0
\(225\) 29.7846i 1.98564i
\(226\) −3.46410 6.00000i −0.230429 0.399114i
\(227\) 5.25933 + 9.10943i 0.349074 + 0.604614i 0.986085 0.166240i \(-0.0531627\pi\)
−0.637011 + 0.770855i \(0.719829\pi\)
\(228\) 1.33013 + 4.96410i 0.0880898 + 0.328756i
\(229\) −12.4877 + 21.6293i −0.825209 + 1.42930i 0.0765496 + 0.997066i \(0.475610\pi\)
−0.901759 + 0.432239i \(0.857724\pi\)
\(230\) 2.82843 + 4.89898i 0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 3.46410i 0.131306 0.227429i
\(233\) 12.0622 + 20.8923i 0.790220 + 1.36870i 0.925831 + 0.377938i \(0.123367\pi\)
−0.135611 + 0.990762i \(0.543300\pi\)
\(234\) 20.0764i 1.31243i
\(235\) −20.3923 + 35.3205i −1.33025 + 2.30406i
\(236\) −8.62398 −0.561373
\(237\) −8.24504 2.20925i −0.535573 0.143506i
\(238\) 0 0
\(239\) 6.46410 + 11.1962i 0.418128 + 0.724219i 0.995751 0.0920846i \(-0.0293530\pi\)
−0.577623 + 0.816304i \(0.696020\pi\)
\(240\) −4.73205 + 4.73205i −0.305453 + 0.305453i
\(241\) −11.7112 20.2844i −0.754387 1.30664i −0.945679 0.325103i \(-0.894601\pi\)
0.191292 0.981533i \(-0.438732\pi\)
\(242\) −1.46410 + 2.53590i −0.0941160 + 0.163014i
\(243\) 4.03459 + 15.0573i 0.258819 + 0.965926i
\(244\) 6.96953 0.446179
\(245\) 0 0
\(246\) 0.571797 + 2.13397i 0.0364564 + 0.136057i
\(247\) 9.92820 17.1962i 0.631716 1.09416i
\(248\) 1.79315 0.113865
\(249\) 21.9282 21.9282i 1.38964 1.38964i
\(250\) 19.0411 1.20427
\(251\) −16.3514 −1.03209 −0.516045 0.856561i \(-0.672596\pi\)
−0.516045 + 0.856561i \(0.672596\pi\)
\(252\) 0 0
\(253\) 5.46410 0.343525
\(254\) 6.53590 0.410099
\(255\) −9.38186 35.0136i −0.587515 2.19263i
\(256\) 1.00000 0.0625000
\(257\) −1.34486 + 2.32937i −0.0838903 + 0.145302i −0.904918 0.425586i \(-0.860068\pi\)
0.821028 + 0.570889i \(0.193401\pi\)
\(258\) −4.57081 + 4.57081i −0.284566 + 0.284566i
\(259\) 0 0
\(260\) 25.8564 1.60355
\(261\) 10.3923 6.00000i 0.643268 0.371391i
\(262\) −3.01790 + 5.22715i −0.186446 + 0.322934i
\(263\) 7.73205 + 13.3923i 0.476779 + 0.825805i 0.999646 0.0266092i \(-0.00847098\pi\)
−0.522867 + 0.852414i \(0.675138\pi\)
\(264\) 1.67303 + 6.24384i 0.102968 + 0.384282i
\(265\) 5.65685 + 9.79796i 0.347498 + 0.601884i
\(266\) 0 0
\(267\) −3.16987 11.8301i −0.193993 0.723992i
\(268\) 5.53590 0.338159
\(269\) 2.82843 4.89898i 0.172452 0.298696i −0.766824 0.641857i \(-0.778164\pi\)
0.939277 + 0.343161i \(0.111498\pi\)
\(270\) −19.3923 + 5.19615i −1.18018 + 0.316228i
\(271\) −9.00292 15.5935i −0.546888 0.947239i −0.998485 0.0550165i \(-0.982479\pi\)
0.451597 0.892222i \(-0.350854\pi\)
\(272\) −2.70831 + 4.69093i −0.164215 + 0.284429i
\(273\) 0 0
\(274\) 4.33013 + 7.50000i 0.261593 + 0.453092i
\(275\) 18.5263 32.0885i 1.11718 1.93501i
\(276\) 1.79315 1.79315i 0.107935 0.107935i
\(277\) −12.2679 21.2487i −0.737110 1.27671i −0.953792 0.300469i \(-0.902857\pi\)
0.216682 0.976242i \(-0.430477\pi\)
\(278\) 8.17569 + 14.1607i 0.490346 + 0.849303i
\(279\) 4.65874 + 2.68973i 0.278912 + 0.161030i
\(280\) 0 0
\(281\) 4.92820 8.53590i 0.293992 0.509209i −0.680758 0.732508i \(-0.738349\pi\)
0.974750 + 0.223299i \(0.0716828\pi\)
\(282\) 17.6603 + 4.73205i 1.05165 + 0.281790i
\(283\) 9.41902 0.559903 0.279951 0.960014i \(-0.409682\pi\)
0.279951 + 0.960014i \(0.409682\pi\)
\(284\) 2.53590 0.150478
\(285\) −19.1798 5.13922i −1.13611 0.304421i
\(286\) 12.4877 21.6293i 0.738412 1.27897i
\(287\) 0 0
\(288\) 2.59808 + 1.50000i 0.153093 + 0.0883883i
\(289\) −6.16987 10.6865i −0.362934 0.628620i
\(290\) 7.72741 + 13.3843i 0.453769 + 0.785951i
\(291\) 7.22243 7.22243i 0.423386 0.423386i
\(292\) 3.41542 5.91567i 0.199872 0.346189i
\(293\) 9.52056 + 16.4901i 0.556197 + 0.963361i 0.997809 + 0.0661554i \(0.0210733\pi\)
−0.441612 + 0.897206i \(0.645593\pi\)
\(294\) 0 0
\(295\) 16.6603 28.8564i 0.969997 1.68008i
\(296\) −0.267949 0.464102i −0.0155742 0.0269754i
\(297\) −5.01910 + 18.7315i −0.291238 + 1.08691i
\(298\) −4.53590 + 7.85641i −0.262758 + 0.455109i
\(299\) −9.79796 −0.566631
\(300\) −4.45069 16.6102i −0.256961 0.958991i
\(301\) 0 0
\(302\) 1.19615 + 2.07180i 0.0688308 + 0.119219i
\(303\) −2.19615 8.19615i −0.126166 0.470857i
\(304\) 1.48356 + 2.56961i 0.0850882 + 0.147377i
\(305\) −13.4641 + 23.3205i −0.770952 + 1.33533i
\(306\) −14.0728 + 8.12493i −0.804488 + 0.464471i
\(307\) −11.0735 −0.631996 −0.315998 0.948760i \(-0.602339\pi\)
−0.315998 + 0.948760i \(0.602339\pi\)
\(308\) 0 0
\(309\) −9.12436 + 9.12436i −0.519066 + 0.519066i
\(310\) −3.46410 + 6.00000i −0.196748 + 0.340777i
\(311\) −12.3490 −0.700247 −0.350123 0.936704i \(-0.613860\pi\)
−0.350123 + 0.936704i \(0.613860\pi\)
\(312\) −3.00000 11.1962i −0.169842 0.633857i
\(313\) 23.4225 1.32392 0.661958 0.749541i \(-0.269726\pi\)
0.661958 + 0.749541i \(0.269726\pi\)
\(314\) 4.62158 0.260811
\(315\) 0 0
\(316\) −4.92820 −0.277233
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 3.58630 3.58630i 0.201110 0.201110i
\(319\) 14.9282 0.835819
\(320\) −1.93185 + 3.34607i −0.107994 + 0.187051i
\(321\) −1.52073 5.67544i −0.0848788 0.316772i
\(322\) 0 0
\(323\) −16.0718 −0.894259
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) −33.2204 + 57.5394i −1.84274 + 3.19171i
\(326\) −10.6603 18.4641i −0.590417 1.02263i
\(327\) 10.9348 10.9348i 0.604694 0.604694i
\(328\) 0.637756 + 1.10463i 0.0352142 + 0.0609928i
\(329\) 0 0
\(330\) −24.1244 6.46410i −1.32800 0.355837i
\(331\) −4.53590 −0.249316 −0.124658 0.992200i \(-0.539783\pi\)
−0.124658 + 0.992200i \(0.539783\pi\)
\(332\) 8.95215 15.5056i 0.491313 0.850979i
\(333\) 1.60770i 0.0881012i
\(334\) −10.5558 18.2832i −0.577590 1.00041i
\(335\) −10.6945 + 18.5235i −0.584305 + 1.01205i
\(336\) 0 0
\(337\) 3.50000 + 6.06218i 0.190657 + 0.330228i 0.945468 0.325714i \(-0.105605\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(338\) −15.8923 + 27.5263i −0.864427 + 1.49723i
\(339\) −3.10583 11.5911i −0.168685 0.629543i
\(340\) −10.4641 18.1244i −0.567496 0.982931i
\(341\) 3.34607 + 5.79555i 0.181200 + 0.313847i
\(342\) 8.90138i 0.481332i
\(343\) 0 0
\(344\) −1.86603 + 3.23205i −0.100609 + 0.174261i
\(345\) 2.53590 + 9.46410i 0.136528 + 0.509530i
\(346\) 1.79315 0.0964004
\(347\) 21.5885 1.15893 0.579465 0.814997i \(-0.303262\pi\)
0.579465 + 0.814997i \(0.303262\pi\)
\(348\) 4.89898 4.89898i 0.262613 0.262613i
\(349\) −8.24504 + 14.2808i −0.441347 + 0.764436i −0.997790 0.0664504i \(-0.978833\pi\)
0.556443 + 0.830886i \(0.312166\pi\)
\(350\) 0 0
\(351\) 9.00000 33.5885i 0.480384 1.79282i
\(352\) 1.86603 + 3.23205i 0.0994595 + 0.172269i
\(353\) 13.2134 + 22.8862i 0.703277 + 1.21811i 0.967310 + 0.253598i \(0.0816139\pi\)
−0.264033 + 0.964514i \(0.585053\pi\)
\(354\) −14.4282 3.86603i −0.766850 0.205477i
\(355\) −4.89898 + 8.48528i −0.260011 + 0.450352i
\(356\) −3.53553 6.12372i −0.187383 0.324557i
\(357\) 0 0
\(358\) −9.46410 + 16.3923i −0.500193 + 0.866360i
\(359\) −0.267949 0.464102i −0.0141418 0.0244943i 0.858868 0.512197i \(-0.171168\pi\)
−0.873010 + 0.487703i \(0.837835\pi\)
\(360\) −10.0382 + 5.79555i −0.529059 + 0.305453i
\(361\) 5.09808 8.83013i 0.268320 0.464744i
\(362\) −16.9706 −0.891953
\(363\) −3.58630 + 3.58630i −0.188232 + 0.188232i
\(364\) 0 0
\(365\) 13.1962 + 22.8564i 0.690718 + 1.19636i
\(366\) 11.6603 + 3.12436i 0.609491 + 0.163313i
\(367\) 7.86611 + 13.6245i 0.410607 + 0.711193i 0.994956 0.100310i \(-0.0319833\pi\)
−0.584349 + 0.811503i \(0.698650\pi\)
\(368\) 0.732051 1.26795i 0.0381608 0.0660964i
\(369\) 3.82654i 0.199202i
\(370\) 2.07055 0.107643
\(371\) 0 0
\(372\) 3.00000 + 0.803848i 0.155543 + 0.0416776i
\(373\) −15.3923 + 26.6603i −0.796983 + 1.38042i 0.124589 + 0.992208i \(0.460239\pi\)
−0.921572 + 0.388207i \(0.873095\pi\)
\(374\) −20.2151 −1.04530
\(375\) 31.8564 + 8.53590i 1.64506 + 0.440792i
\(376\) 10.5558 0.544376
\(377\) −26.7685 −1.37865
\(378\) 0 0
\(379\) −17.5885 −0.903458 −0.451729 0.892155i \(-0.649193\pi\)
−0.451729 + 0.892155i \(0.649193\pi\)
\(380\) −11.4641 −0.588096
\(381\) 10.9348 + 2.92996i 0.560205 + 0.150107i
\(382\) 1.07180 0.0548379
\(383\) 10.8332 18.7637i 0.553552 0.958781i −0.444462 0.895798i \(-0.646605\pi\)
0.998015 0.0629833i \(-0.0200615\pi\)
\(384\) 1.67303 + 0.448288i 0.0853766 + 0.0228766i
\(385\) 0 0
\(386\) −23.0526 −1.17334
\(387\) −9.69615 + 5.59808i −0.492883 + 0.284566i
\(388\) 2.94855 5.10703i 0.149690 0.259270i
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) 43.2586 + 11.5911i 2.19048 + 0.586939i
\(391\) 3.96524 + 6.86800i 0.200531 + 0.347329i
\(392\) 0 0
\(393\) −7.39230 + 7.39230i −0.372892 + 0.372892i
\(394\) −3.07180 −0.154755
\(395\) 9.52056 16.4901i 0.479031 0.829706i
\(396\) 11.1962i 0.562628i
\(397\) −9.00292 15.5935i −0.451844 0.782616i 0.546657 0.837357i \(-0.315900\pi\)
−0.998501 + 0.0547406i \(0.982567\pi\)
\(398\) 8.90138 15.4176i 0.446186 0.772817i
\(399\) 0 0
\(400\) −4.96410 8.59808i −0.248205 0.429904i
\(401\) −8.89230 + 15.4019i −0.444061 + 0.769135i −0.997986 0.0634307i \(-0.979796\pi\)
0.553926 + 0.832566i \(0.313129\pi\)
\(402\) 9.26174 + 2.48168i 0.461934 + 0.123775i
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) −2.44949 4.24264i −0.121867 0.211079i
\(405\) −34.7733 −1.72790
\(406\) 0 0
\(407\) 1.00000 1.73205i 0.0495682 0.0858546i
\(408\) −6.63397 + 6.63397i −0.328431 + 0.328431i
\(409\) 16.7303 0.827261 0.413631 0.910445i \(-0.364260\pi\)
0.413631 + 0.910445i \(0.364260\pi\)
\(410\) −4.92820 −0.243387
\(411\) 3.88229 + 14.4889i 0.191499 + 0.714684i
\(412\) −3.72500 + 6.45189i −0.183518 + 0.317862i
\(413\) 0 0
\(414\) 3.80385 2.19615i 0.186949 0.107935i
\(415\) 34.5885 + 59.9090i 1.69788 + 2.94082i
\(416\) −3.34607 5.79555i −0.164054 0.284150i
\(417\) 7.33013 + 27.3564i 0.358958 + 1.33965i
\(418\) −5.53674 + 9.58991i −0.270811 + 0.469058i
\(419\) 3.95164 + 6.84443i 0.193050 + 0.334373i 0.946260 0.323408i \(-0.104829\pi\)
−0.753209 + 0.657781i \(0.771495\pi\)
\(420\) 0 0
\(421\) −14.1962 + 24.5885i −0.691878 + 1.19837i 0.279344 + 0.960191i \(0.409883\pi\)
−0.971222 + 0.238177i \(0.923450\pi\)
\(422\) −2.53590 4.39230i −0.123446 0.213814i
\(423\) 27.4249 + 15.8338i 1.33344 + 0.769863i
\(424\) 1.46410 2.53590i 0.0711031 0.123154i
\(425\) 53.7773 2.60858
\(426\) 4.24264 + 1.13681i 0.205557 + 0.0550787i
\(427\) 0 0
\(428\) −1.69615 2.93782i −0.0819866 0.142005i
\(429\) 30.5885 30.5885i 1.47682 1.47682i
\(430\) −7.20977 12.4877i −0.347686 0.602210i
\(431\) 18.9282 32.7846i 0.911739 1.57918i 0.100133 0.994974i \(-0.468073\pi\)
0.811606 0.584205i \(-0.198594\pi\)
\(432\) 3.67423 + 3.67423i 0.176777 + 0.176777i
\(433\) 7.10823 0.341600 0.170800 0.985306i \(-0.445365\pi\)
0.170800 + 0.985306i \(0.445365\pi\)
\(434\) 0 0
\(435\) 6.92820 + 25.8564i 0.332182 + 1.23972i
\(436\) 4.46410 7.73205i 0.213792 0.370298i
\(437\) 4.34418 0.207810
\(438\) 8.36603 8.36603i 0.399744 0.399744i
\(439\) −19.5959 −0.935262 −0.467631 0.883924i \(-0.654892\pi\)
−0.467631 + 0.883924i \(0.654892\pi\)
\(440\) −14.4195 −0.687424
\(441\) 0 0
\(442\) 36.2487 1.72418
\(443\) −18.3205 −0.870434 −0.435217 0.900326i \(-0.643328\pi\)
−0.435217 + 0.900326i \(0.643328\pi\)
\(444\) −0.240237 0.896575i −0.0114011 0.0425496i
\(445\) 27.3205 1.29512
\(446\) 13.3843 23.1822i 0.633763 1.09771i
\(447\) −11.1106 + 11.1106i −0.525515 + 0.525515i
\(448\) 0 0
\(449\) −17.7846 −0.839308 −0.419654 0.907684i \(-0.637849\pi\)
−0.419654 + 0.907684i \(0.637849\pi\)
\(450\) 29.7846i 1.40406i
\(451\) −2.38014 + 4.12252i −0.112076 + 0.194122i
\(452\) −3.46410 6.00000i −0.162938 0.282216i
\(453\) 1.07244 + 4.00240i 0.0503877 + 0.188049i
\(454\) 5.25933 + 9.10943i 0.246833 + 0.427527i
\(455\) 0 0
\(456\) 1.33013 + 4.96410i 0.0622889 + 0.232465i
\(457\) 7.05256 0.329905 0.164952 0.986302i \(-0.447253\pi\)
0.164952 + 0.986302i \(0.447253\pi\)
\(458\) −12.4877 + 21.6293i −0.583511 + 1.01067i
\(459\) −27.1865 + 7.28461i −1.26896 + 0.340016i
\(460\) 2.82843 + 4.89898i 0.131876 + 0.228416i
\(461\) 12.8666 22.2856i 0.599258 1.03795i −0.393672 0.919251i \(-0.628796\pi\)
0.992931 0.118695i \(-0.0378711\pi\)
\(462\) 0 0
\(463\) −19.3205 33.4641i −0.897900 1.55521i −0.830174 0.557505i \(-0.811759\pi\)
−0.0677264 0.997704i \(-0.521575\pi\)
\(464\) 2.00000 3.46410i 0.0928477 0.160817i
\(465\) −8.48528 + 8.48528i −0.393496 + 0.393496i
\(466\) 12.0622 + 20.8923i 0.558770 + 0.967817i
\(467\) 13.7818 + 23.8707i 0.637745 + 1.10461i 0.985927 + 0.167179i \(0.0534659\pi\)
−0.348182 + 0.937427i \(0.613201\pi\)
\(468\) 20.0764i 0.928032i
\(469\) 0 0
\(470\) −20.3923 + 35.3205i −0.940627 + 1.62921i
\(471\) 7.73205 + 2.07180i 0.356274 + 0.0954634i
\(472\) −8.62398 −0.396951
\(473\) −13.9282 −0.640419
\(474\) −8.24504 2.20925i −0.378707 0.101474i
\(475\) 14.7291 25.5116i 0.675819 1.17055i
\(476\) 0 0
\(477\) 7.60770 4.39230i 0.348332 0.201110i
\(478\) 6.46410 + 11.1962i 0.295661 + 0.512100i
\(479\) −7.72741 13.3843i −0.353074 0.611542i 0.633712 0.773569i \(-0.281530\pi\)
−0.986786 + 0.162026i \(0.948197\pi\)
\(480\) −4.73205 + 4.73205i −0.215988 + 0.215988i
\(481\) −1.79315 + 3.10583i −0.0817606 + 0.141614i
\(482\) −11.7112 20.2844i −0.533432 0.923931i
\(483\) 0 0
\(484\) −1.46410 + 2.53590i −0.0665501 + 0.115268i
\(485\) 11.3923 + 19.7321i 0.517298 + 0.895986i
\(486\) 4.03459 + 15.0573i 0.183013 + 0.683013i
\(487\) −19.3923 + 33.5885i −0.878749 + 1.52204i −0.0260347 + 0.999661i \(0.508288\pi\)
−0.852714 + 0.522377i \(0.825045\pi\)
\(488\) 6.96953 0.315496
\(489\) −9.55772 35.6699i −0.432215 1.61305i
\(490\) 0 0
\(491\) 0.696152 + 1.20577i 0.0314169 + 0.0544157i 0.881306 0.472545i \(-0.156665\pi\)
−0.849889 + 0.526961i \(0.823331\pi\)
\(492\) 0.571797 + 2.13397i 0.0257786 + 0.0962070i
\(493\) 10.8332 + 18.7637i 0.487904 + 0.845075i
\(494\) 9.92820 17.1962i 0.446691 0.773691i
\(495\) −37.4631 21.6293i −1.68384 0.972165i
\(496\) 1.79315 0.0805149
\(497\) 0 0
\(498\) 21.9282 21.9282i 0.982626 0.982626i
\(499\) −6.30385 + 10.9186i −0.282199 + 0.488783i −0.971926 0.235286i \(-0.924397\pi\)
0.689727 + 0.724069i \(0.257731\pi\)
\(500\) 19.0411 0.851545
\(501\) −9.46410 35.3205i −0.422825 1.57800i
\(502\) −16.3514 −0.729798
\(503\) −7.45001 −0.332179 −0.166090 0.986111i \(-0.553114\pi\)
−0.166090 + 0.986111i \(0.553114\pi\)
\(504\) 0 0
\(505\) 18.9282 0.842294
\(506\) 5.46410 0.242909
\(507\) −38.9280 + 38.9280i −1.72885 + 1.72885i
\(508\) 6.53590 0.289984
\(509\) −13.2456 + 22.9420i −0.587099 + 1.01689i 0.407511 + 0.913200i \(0.366397\pi\)
−0.994610 + 0.103685i \(0.966937\pi\)
\(510\) −9.38186 35.0136i −0.415436 1.55043i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −3.99038 + 14.8923i −0.176180 + 0.657511i
\(514\) −1.34486 + 2.32937i −0.0593194 + 0.102744i
\(515\) −14.3923 24.9282i −0.634201 1.09847i
\(516\) −4.57081 + 4.57081i −0.201219 + 0.201219i
\(517\) 19.6975 + 34.1170i 0.866293 + 1.50046i
\(518\) 0 0
\(519\) 3.00000 + 0.803848i 0.131685 + 0.0352850i
\(520\) 25.8564 1.13388
\(521\) −16.1805 + 28.0255i −0.708881 + 1.22782i 0.256392 + 0.966573i \(0.417466\pi\)
−0.965273 + 0.261244i \(0.915867\pi\)
\(522\) 10.3923 6.00000i 0.454859 0.262613i
\(523\) 1.88108 + 3.25813i 0.0822540 + 0.142468i 0.904218 0.427072i \(-0.140455\pi\)
−0.821964 + 0.569540i \(0.807121\pi\)
\(524\) −3.01790 + 5.22715i −0.131837 + 0.228349i
\(525\) 0 0
\(526\) 7.73205 + 13.3923i 0.337133 + 0.583932i
\(527\) −4.85641 + 8.41154i −0.211548 + 0.366413i
\(528\) 1.67303 + 6.24384i 0.0728094 + 0.271728i
\(529\) 10.4282 + 18.0622i 0.453400 + 0.785312i
\(530\) 5.65685 + 9.79796i 0.245718 + 0.425596i
\(531\) −22.4058 12.9360i −0.972327 0.561373i
\(532\) 0 0
\(533\) 4.26795 7.39230i 0.184865 0.320196i
\(534\) −3.16987 11.8301i −0.137174 0.511940i
\(535\) 13.1069 0.566659
\(536\) 5.53590 0.239114
\(537\) −23.1822 + 23.1822i −1.00039 + 1.00039i
\(538\) 2.82843 4.89898i 0.121942 0.211210i
\(539\) 0 0
\(540\) −19.3923 + 5.19615i −0.834512 + 0.223607i
\(541\) 9.66025 + 16.7321i 0.415327 + 0.719367i 0.995463 0.0951526i \(-0.0303339\pi\)
−0.580136 + 0.814520i \(0.697001\pi\)
\(542\) −9.00292 15.5935i −0.386709 0.669799i
\(543\) −28.3923 7.60770i −1.21843 0.326477i
\(544\) −2.70831 + 4.69093i −0.116118 + 0.201122i
\(545\) 17.2480 + 29.8744i 0.738822 + 1.27968i
\(546\) 0 0
\(547\) 19.1865 33.2321i 0.820357 1.42090i −0.0850597 0.996376i \(-0.527108\pi\)
0.905417 0.424524i \(-0.139559\pi\)
\(548\) 4.33013 + 7.50000i 0.184974 + 0.320384i
\(549\) 18.1074 + 10.4543i 0.772804 + 0.446179i
\(550\) 18.5263 32.0885i 0.789963 1.36826i
\(551\) 11.8685 0.505616
\(552\) 1.79315 1.79315i 0.0763216 0.0763216i
\(553\) 0 0
\(554\) −12.2679 21.2487i −0.521215 0.902771i
\(555\) 3.46410 + 0.928203i 0.147043 + 0.0394000i
\(556\) 8.17569 + 14.1607i 0.346727 + 0.600548i
\(557\) −3.46410 + 6.00000i −0.146779 + 0.254228i −0.930035 0.367471i \(-0.880224\pi\)
0.783256 + 0.621699i \(0.213557\pi\)
\(558\) 4.65874 + 2.68973i 0.197220 + 0.113865i
\(559\) 24.9754 1.05635
\(560\) 0 0
\(561\) −33.8205 9.06218i −1.42790 0.382605i
\(562\) 4.92820 8.53590i 0.207884 0.360065i
\(563\) −25.5945 −1.07868 −0.539341 0.842088i \(-0.681327\pi\)
−0.539341 + 0.842088i \(0.681327\pi\)
\(564\) 17.6603 + 4.73205i 0.743631 + 0.199255i
\(565\) 26.7685 1.12616
\(566\) 9.41902 0.395911
\(567\) 0 0
\(568\) 2.53590 0.106404
\(569\) 15.7846 0.661725 0.330863 0.943679i \(-0.392660\pi\)
0.330863 + 0.943679i \(0.392660\pi\)
\(570\) −19.1798 5.13922i −0.803354 0.215258i
\(571\) 5.05256 0.211443 0.105722 0.994396i \(-0.466285\pi\)
0.105722 + 0.994396i \(0.466285\pi\)
\(572\) 12.4877 21.6293i 0.522136 0.904367i
\(573\) 1.79315 + 0.480473i 0.0749100 + 0.0200721i
\(574\) 0 0
\(575\) −14.5359 −0.606189
\(576\) 2.59808 + 1.50000i 0.108253 + 0.0625000i
\(577\) 22.3178 38.6556i 0.929103 1.60925i 0.144278 0.989537i \(-0.453914\pi\)
0.784825 0.619717i \(-0.212753\pi\)
\(578\) −6.16987 10.6865i −0.256633 0.444501i
\(579\) −38.5677 10.3342i −1.60282 0.429474i
\(580\) 7.72741 + 13.3843i 0.320863 + 0.555751i
\(581\) 0 0
\(582\) 7.22243 7.22243i 0.299379 0.299379i
\(583\) 10.9282 0.452600
\(584\) 3.41542 5.91567i 0.141331 0.244792i
\(585\) 67.1769 + 38.7846i 2.77742 + 1.60355i
\(586\) 9.52056 + 16.4901i 0.393291 + 0.681199i
\(587\) −14.5768 + 25.2478i −0.601650 + 1.04209i 0.390922 + 0.920424i \(0.372156\pi\)
−0.992571 + 0.121664i \(0.961177\pi\)
\(588\) 0 0
\(589\) 2.66025 + 4.60770i 0.109614 + 0.189857i
\(590\) 16.6603 28.8564i 0.685892 1.18800i
\(591\) −5.13922 1.37705i −0.211399 0.0566442i
\(592\) −0.267949 0.464102i −0.0110126 0.0190745i
\(593\) 1.36345 + 2.36156i 0.0559900 + 0.0969775i 0.892662 0.450727i \(-0.148835\pi\)
−0.836672 + 0.547704i \(0.815502\pi\)
\(594\) −5.01910 + 18.7315i −0.205936 + 0.768564i
\(595\) 0 0
\(596\) −4.53590 + 7.85641i −0.185798 + 0.321811i
\(597\) 21.8038 21.8038i 0.892372 0.892372i
\(598\) −9.79796 −0.400668
\(599\) −36.7846 −1.50298 −0.751489 0.659745i \(-0.770664\pi\)
−0.751489 + 0.659745i \(0.770664\pi\)
\(600\) −4.45069 16.6102i −0.181699 0.678109i
\(601\) 0.448288 0.776457i 0.0182860 0.0316723i −0.856738 0.515753i \(-0.827512\pi\)
0.875024 + 0.484080i \(0.160846\pi\)
\(602\) 0 0
\(603\) 14.3827 + 8.30385i 0.585708 + 0.338159i
\(604\) 1.19615 + 2.07180i 0.0486708 + 0.0843002i
\(605\) −5.65685 9.79796i −0.229984 0.398344i
\(606\) −2.19615 8.19615i −0.0892126 0.332946i
\(607\) 15.8338 27.4249i 0.642672 1.11314i −0.342162 0.939641i \(-0.611159\pi\)
0.984834 0.173500i \(-0.0555076\pi\)
\(608\) 1.48356 + 2.56961i 0.0601665 + 0.104211i
\(609\) 0 0
\(610\) −13.4641 + 23.3205i −0.545146 + 0.944220i
\(611\) −35.3205 61.1769i −1.42891 2.47495i
\(612\) −14.0728 + 8.12493i −0.568859 + 0.328431i
\(613\) −5.53590 + 9.58846i −0.223593 + 0.387274i −0.955896 0.293704i \(-0.905112\pi\)
0.732304 + 0.680978i \(0.238445\pi\)
\(614\) −11.0735 −0.446889
\(615\) −8.24504 2.20925i −0.332472 0.0890857i
\(616\) 0 0
\(617\) 15.4282 + 26.7224i 0.621116 + 1.07580i 0.989278 + 0.146043i \(0.0466538\pi\)
−0.368162 + 0.929762i \(0.620013\pi\)
\(618\) −9.12436 + 9.12436i −0.367035 + 0.367035i
\(619\) −12.3168 21.3333i −0.495054 0.857459i 0.504930 0.863160i \(-0.331518\pi\)
−0.999984 + 0.00570182i \(0.998185\pi\)
\(620\) −3.46410 + 6.00000i −0.139122 + 0.240966i
\(621\) 7.34847 1.96902i 0.294884 0.0790139i
\(622\) −12.3490 −0.495149
\(623\) 0 0
\(624\) −3.00000 11.1962i −0.120096 0.448205i
\(625\) −11.9641 + 20.7224i −0.478564 + 0.828897i
\(626\) 23.4225 0.936150
\(627\) −13.5622 + 13.5622i −0.541621 + 0.541621i
\(628\) 4.62158 0.184421
\(629\) 2.90276 0.115740
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) −4.92820 −0.196033
\(633\) −2.27362 8.48528i −0.0903685 0.337260i
\(634\) −26.0000 −1.03259
\(635\) −12.6264 + 21.8695i −0.501063 + 0.867866i
\(636\) 3.58630 3.58630i 0.142206 0.142206i
\(637\) 0 0
\(638\) 14.9282 0.591013
\(639\) 6.58846 + 3.80385i 0.260635 + 0.150478i
\(640\) −1.93185 + 3.34607i −0.0763631 + 0.132265i
\(641\) −8.96410 15.5263i −0.354061 0.613251i 0.632896 0.774237i \(-0.281866\pi\)
−0.986957 + 0.160986i \(0.948533\pi\)
\(642\) −1.52073 5.67544i −0.0600184 0.223992i
\(643\) 6.53485 + 11.3187i 0.257709 + 0.446365i 0.965628 0.259929i \(-0.0836990\pi\)
−0.707919 + 0.706294i \(0.750366\pi\)
\(644\) 0 0
\(645\) −6.46410 24.1244i −0.254524 0.949896i
\(646\) −16.0718 −0.632336
\(647\) −6.03579 + 10.4543i −0.237291 + 0.411001i −0.959936 0.280219i \(-0.909593\pi\)
0.722645 + 0.691220i \(0.242926\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) −16.0926 27.8731i −0.631689 1.09412i
\(650\) −33.2204 + 57.5394i −1.30301 + 2.25688i
\(651\) 0 0
\(652\) −10.6603 18.4641i −0.417488 0.723110i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 10.9348 10.9348i 0.427583 0.427583i
\(655\) −11.6603 20.1962i −0.455604 0.789129i
\(656\) 0.637756 + 1.10463i 0.0249002 + 0.0431284i
\(657\) 17.7470 10.2462i 0.692377 0.399744i
\(658\) 0 0
\(659\) −0.124356 + 0.215390i −0.00484421 + 0.00839042i −0.868437 0.495799i \(-0.834875\pi\)
0.863593 + 0.504189i \(0.168209\pi\)
\(660\) −24.1244 6.46410i −0.939039 0.251615i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −4.53590 −0.176293
\(663\) 60.6453 + 16.2499i 2.35527 + 0.631092i
\(664\) 8.95215 15.5056i 0.347411 0.601733i
\(665\) 0 0
\(666\) 1.60770i 0.0622969i
\(667\) −2.92820 5.07180i −0.113380 0.196381i
\(668\) −10.5558 18.2832i −0.408417 0.707400i
\(669\) 32.7846 32.7846i 1.26753 1.26753i
\(670\) −10.6945 + 18.5235i −0.413166 + 0.715624i
\(671\) 13.0053 + 22.5259i 0.502065 + 0.869602i
\(672\) 0 0
\(673\) 20.7846 36.0000i 0.801188 1.38770i −0.117647 0.993055i \(-0.537535\pi\)
0.918835 0.394643i \(-0.129132\pi\)
\(674\) 3.50000 + 6.06218i 0.134815 + 0.233506i
\(675\) 13.3521 49.8306i 0.513922 1.91798i
\(676\) −15.8923 + 27.5263i −0.611242 + 1.05870i
\(677\) −20.0764 −0.771598 −0.385799 0.922583i \(-0.626074\pi\)
−0.385799 + 0.922583i \(0.626074\pi\)
\(678\) −3.10583 11.5911i −0.119279 0.445154i
\(679\) 0 0
\(680\) −10.4641 18.1244i −0.401280 0.695037i
\(681\) 4.71539 + 17.5981i 0.180694 + 0.674360i
\(682\) 3.34607 + 5.79555i 0.128127 + 0.221923i
\(683\) 1.83975 3.18653i 0.0703959 0.121929i −0.828679 0.559724i \(-0.810907\pi\)
0.899075 + 0.437795i \(0.144240\pi\)
\(684\) 8.90138i 0.340353i
\(685\) −33.4607 −1.27847
\(686\) 0 0
\(687\) −30.5885 + 30.5885i −1.16702 + 1.16702i
\(688\) −1.86603 + 3.23205i −0.0711416 + 0.123221i
\(689\) −19.5959 −0.746545
\(690\) 2.53590 + 9.46410i 0.0965400 + 0.360292i
\(691\) 9.62209 0.366042 0.183021 0.983109i \(-0.441412\pi\)
0.183021 + 0.983109i \(0.441412\pi\)
\(692\) 1.79315 0.0681654
\(693\) 0 0
\(694\) 21.5885 0.819487
\(695\) −63.1769 −2.39644
\(696\) 4.89898 4.89898i 0.185695 0.185695i
\(697\) −6.90897 −0.261696
\(698\) −8.24504 + 14.2808i −0.312080 + 0.540538i
\(699\) 10.8147 + 40.3608i 0.409048 + 1.52659i
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 9.00000 33.5885i 0.339683 1.26771i
\(703\) 0.795040 1.37705i 0.0299855 0.0519364i
\(704\) 1.86603 + 3.23205i 0.0703285 + 0.121812i
\(705\) −49.9507 + 49.9507i −1.88125 + 1.88125i
\(706\) 13.2134 + 22.8862i 0.497292 + 0.861335i
\(707\) 0 0
\(708\) −14.4282 3.86603i −0.542245 0.145294i
\(709\) 8.39230 0.315180 0.157590 0.987505i \(-0.449628\pi\)
0.157590 + 0.987505i \(0.449628\pi\)
\(710\) −4.89898 + 8.48528i −0.183855 + 0.318447i
\(711\) −12.8038 7.39230i −0.480182 0.277233i
\(712\) −3.53553 6.12372i −0.132500 0.229496i
\(713\) 1.31268 2.27362i 0.0491602 0.0851479i
\(714\) 0 0
\(715\) 48.2487 + 83.5692i 1.80440 + 3.12531i
\(716\) −9.46410 + 16.3923i −0.353690 + 0.612609i
\(717\) 5.79555 + 21.6293i 0.216439 + 0.807761i
\(718\) −0.267949 0.464102i −0.00999978 0.0173201i
\(719\) 7.69024 + 13.3199i 0.286798 + 0.496748i 0.973044 0.230622i \(-0.0740759\pi\)
−0.686246 + 0.727370i \(0.740743\pi\)
\(720\) −10.0382 + 5.79555i −0.374101 + 0.215988i
\(721\) 0 0
\(722\) 5.09808 8.83013i 0.189731 0.328623i
\(723\) −10.5000 39.1865i −0.390499 1.45736i
\(724\) −16.9706 −0.630706
\(725\) −39.7128 −1.47490
\(726\) −3.58630 + 3.58630i −0.133100 + 0.133100i
\(727\) 0.795040 1.37705i 0.0294864 0.0510719i −0.850906 0.525319i \(-0.823946\pi\)
0.880392 + 0.474247i \(0.157279\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 13.1962 + 22.8564i 0.488412 + 0.845954i
\(731\) −10.1075 17.5068i −0.373841 0.647512i
\(732\) 11.6603 + 3.12436i 0.430975 + 0.115480i
\(733\) 8.24504 14.2808i 0.304538 0.527475i −0.672621 0.739988i \(-0.734831\pi\)
0.977158 + 0.212513i \(0.0681647\pi\)
\(734\) 7.86611 + 13.6245i 0.290343 + 0.502889i
\(735\) 0 0
\(736\) 0.732051 1.26795i 0.0269838 0.0467372i
\(737\) 10.3301 + 17.8923i 0.380515 + 0.659072i
\(738\) 3.82654i 0.140857i
\(739\) 9.06218 15.6962i 0.333358 0.577392i −0.649810 0.760096i \(-0.725152\pi\)
0.983168 + 0.182704i \(0.0584850\pi\)
\(740\) 2.07055 0.0761150
\(741\) 24.3190 24.3190i 0.893382 0.893382i
\(742\) 0 0
\(743\) −25.7846 44.6603i −0.945946 1.63843i −0.753847 0.657050i \(-0.771804\pi\)
−0.192099 0.981376i \(-0.561529\pi\)
\(744\) 3.00000 + 0.803848i 0.109985 + 0.0294705i
\(745\) −17.5254 30.3548i −0.642080 1.11211i
\(746\) −15.3923 + 26.6603i −0.563552 + 0.976101i
\(747\) 46.5167 26.8565i 1.70196 0.982626i
\(748\) −20.2151 −0.739137
\(749\) 0 0
\(750\) 31.8564 + 8.53590i 1.16323 + 0.311687i
\(751\) 3.39230 5.87564i 0.123787 0.214405i −0.797471 0.603357i \(-0.793829\pi\)
0.921258 + 0.388952i \(0.127163\pi\)
\(752\) 10.5558 0.384932
\(753\) −27.3564 7.33013i −0.996923 0.267125i
\(754\) −26.7685 −0.974852
\(755\) −9.24316 −0.336393
\(756\) 0 0
\(757\) −15.3205 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(758\) −17.5885 −0.638842
\(759\) 9.14162 + 2.44949i 0.331820 + 0.0889108i
\(760\) −11.4641 −0.415847
\(761\) 15.2282 26.3760i 0.552021 0.956129i −0.446108 0.894979i \(-0.647190\pi\)
0.998129 0.0611492i \(-0.0194765\pi\)
\(762\) 10.9348 + 2.92996i 0.396125 + 0.106141i
\(763\) 0 0
\(764\) 1.07180 0.0387762
\(765\) 62.7846i 2.26998i
\(766\) 10.8332 18.7637i 0.391421 0.677961i
\(767\) 28.8564 + 49.9808i 1.04194 + 1.80470i
\(768\) 1.67303 + 0.448288i 0.0603704 + 0.0161762i
\(769\) −19.0919 33.0681i −0.688471 1.19247i −0.972332 0.233601i \(-0.924949\pi\)
0.283862 0.958865i \(-0.408384\pi\)
\(770\) 0 0
\(771\) −3.29423 + 3.29423i −0.118639 + 0.118639i
\(772\) −23.0526 −0.829680
\(773\) −0.101536 + 0.175865i −0.00365199 + 0.00632544i −0.867846 0.496834i \(-0.834496\pi\)
0.864194 + 0.503159i \(0.167829\pi\)
\(774\) −9.69615 + 5.59808i −0.348521 + 0.201219i
\(775\) −8.90138 15.4176i −0.319747 0.553818i
\(776\) 2.94855 5.10703i 0.105847 0.183332i
\(777\) 0 0
\(778\) −4.00000 6.92820i −0.143407 0.248388i
\(779\) −1.89230 + 3.27757i −0.0677989 + 0.117431i
\(780\) 43.2586 + 11.5911i 1.54891 + 0.415028i
\(781\) 4.73205 + 8.19615i 0.169326 + 0.293281i
\(782\) 3.96524 + 6.86800i 0.141797 + 0.245599i
\(783\) 20.0764 5.37945i 0.717472 0.192246i
\(784\) 0 0
\(785\) −8.92820 + 15.4641i −0.318661 + 0.551937i
\(786\) −7.39230 + 7.39230i −0.263675 + 0.263675i
\(787\) −46.7434 −1.66622 −0.833111 0.553106i \(-0.813442\pi\)
−0.833111 + 0.553106i \(0.813442\pi\)
\(788\) −3.07180 −0.109428
\(789\) 6.93237 + 25.8719i 0.246799 + 0.921066i
\(790\) 9.52056 16.4901i 0.338726 0.586691i
\(791\) 0 0
\(792\) 11.1962i 0.397838i
\(793\) −23.3205 40.3923i −0.828136 1.43437i
\(794\) −9.00292 15.5935i −0.319502 0.553393i
\(795\) 5.07180 + 18.9282i 0.179878 + 0.671314i
\(796\) 8.90138 15.4176i 0.315501 0.546464i
\(797\) −10.4543 18.1074i −0.370310 0.641396i 0.619303 0.785152i \(-0.287415\pi\)
−0.989613 + 0.143756i \(0.954082\pi\)
\(798\) 0 0
\(799\) −28.5885 + 49.5167i −1.01139 + 1.75177i
\(800\) −4.96410 8.59808i −0.175507 0.303988i
\(801\) 21.2132i 0.749532i
\(802\) −8.89230 + 15.4019i −0.313998 + 0.543861i
\(803\) 25.4930 0.899629
\(804\) 9.26174 + 2.48168i 0.326636 + 0.0875219i
\(805\) 0 0
\(806\) −6.00000 10.3923i −0.211341 0.366053i
\(807\) 6.92820 6.92820i 0.243884 0.243884i
\(808\) −2.44949 4.24264i −0.0861727 0.149256i
\(809\) 13.1340 22.7487i 0.461766 0.799802i −0.537283 0.843402i \(-0.680549\pi\)
0.999049 + 0.0435999i \(0.0138827\pi\)
\(810\) −34.7733 −1.22181
\(811\) 46.1242 1.61964 0.809820 0.586679i \(-0.199565\pi\)
0.809820 + 0.586679i \(0.199565\pi\)
\(812\) 0 0
\(813\) −8.07180 30.1244i −0.283090 1.05651i
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) 82.3761 2.88551
\(816\) −6.63397 + 6.63397i −0.232236 + 0.232236i
\(817\) −11.0735 −0.387412
\(818\) 16.7303 0.584962
\(819\) 0 0
\(820\) −4.92820 −0.172100
\(821\) −10.3923 −0.362694 −0.181347 0.983419i \(-0.558046\pi\)
−0.181347 + 0.983419i \(0.558046\pi\)
\(822\) 3.88229 + 14.4889i 0.135410 + 0.505358i
\(823\) 30.7846 1.07308 0.536542 0.843874i \(-0.319730\pi\)
0.536542 + 0.843874i \(0.319730\pi\)
\(824\) −3.72500 + 6.45189i −0.129767 + 0.224762i
\(825\) 45.3799 45.3799i 1.57993 1.57993i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 3.80385 2.19615i 0.132193 0.0763216i
\(829\) −18.6622 + 32.3238i −0.648164 + 1.12265i 0.335397 + 0.942077i \(0.391130\pi\)
−0.983561 + 0.180576i \(0.942204\pi\)
\(830\) 34.5885 + 59.9090i 1.20058 + 2.07947i
\(831\) −10.9991 41.0494i −0.381556 1.42399i
\(832\) −3.34607 5.79555i −0.116004 0.200925i
\(833\) 0 0
\(834\) 7.33013 + 27.3564i 0.253822 + 0.947275i
\(835\) 81.5692 2.82282
\(836\) −5.53674 + 9.58991i −0.191492 + 0.331674i
\(837\) 6.58846 + 6.58846i 0.227730 + 0.227730i
\(838\) 3.95164 + 6.84443i 0.136507 + 0.236437i
\(839\) −11.3137 + 19.5959i −0.390593 + 0.676526i −0.992528 0.122019i \(-0.961063\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) −14.1962 + 24.5885i −0.489232 + 0.847374i
\(843\) 12.0716 12.0716i 0.415767 0.415767i
\(844\) −2.53590 4.39230i −0.0872892 0.151189i
\(845\) −61.4032 106.353i −2.11233 3.65867i
\(846\) 27.4249 + 15.8338i 0.942886 + 0.544376i
\(847\) 0 0
\(848\) 1.46410 2.53590i 0.0502775 0.0870831i
\(849\) 15.7583 + 4.22243i 0.540824 + 0.144913i
\(850\) 53.7773 1.84455
\(851\) −0.784610 −0.0268961
\(852\) 4.24264 + 1.13681i 0.145350 + 0.0389465i
\(853\) 8.00481 13.8647i 0.274079 0.474719i −0.695823 0.718213i \(-0.744960\pi\)
0.969902 + 0.243494i \(0.0782936\pi\)
\(854\) 0 0
\(855\) −29.7846 17.1962i −1.01861 0.588096i
\(856\) −1.69615 2.93782i −0.0579733 0.100413i
\(857\) −4.19187 7.26054i −0.143192 0.248015i 0.785505 0.618855i \(-0.212403\pi\)
−0.928697 + 0.370840i \(0.879070\pi\)
\(858\) 30.5885 30.5885i 1.04427 1.04427i
\(859\) −7.36705 + 12.7601i −0.251361 + 0.435369i −0.963901 0.266262i \(-0.914211\pi\)
0.712540 + 0.701631i \(0.247545\pi\)
\(860\) −7.20977 12.4877i −0.245851 0.425827i
\(861\) 0 0
\(862\) 18.9282 32.7846i 0.644697 1.11665i
\(863\) −11.0526 19.1436i −0.376233 0.651656i 0.614277 0.789090i \(-0.289448\pi\)
−0.990511 + 0.137435i \(0.956114\pi\)
\(864\) 3.67423 + 3.67423i 0.125000 + 0.125000i
\(865\) −3.46410 + 6.00000i −0.117783 + 0.204006i
\(866\) 7.10823 0.241548
\(867\) −5.53176 20.6448i −0.187868 0.701134i
\(868\) 0 0
\(869\) −9.19615 15.9282i −0.311958 0.540327i
\(870\) 6.92820 + 25.8564i 0.234888 + 0.876614i
\(871\) −18.5235 32.0836i −0.627644 1.08711i
\(872\) 4.46410 7.73205i 0.151174 0.261840i
\(873\) 15.3211 8.84564i 0.518540 0.299379i
\(874\) 4.34418 0.146944
\(875\) 0 0
\(876\) 8.36603 8.36603i 0.282662 0.282662i
\(877\) −16.5885 + 28.7321i −0.560152 + 0.970212i 0.437330 + 0.899301i \(0.355924\pi\)
−0.997483 + 0.0709114i \(0.977409\pi\)
\(878\) −19.5959 −0.661330
\(879\) 8.53590 + 31.8564i 0.287909 + 1.07449i
\(880\) −14.4195 −0.486082
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 7.53590 0.253603 0.126802 0.991928i \(-0.459529\pi\)
0.126802 + 0.991928i \(0.459529\pi\)
\(884\) 36.2487 1.21918
\(885\) 40.8091 40.8091i 1.37178 1.37178i
\(886\) −18.3205 −0.615490
\(887\) −14.3824 + 24.9110i −0.482913 + 0.836430i −0.999808 0.0196195i \(-0.993755\pi\)
0.516895 + 0.856049i \(0.327088\pi\)
\(888\) −0.240237 0.896575i −0.00806181 0.0300871i
\(889\) 0 0
\(890\) 27.3205 0.915786
\(891\) −16.7942 + 29.0885i −0.562628 + 0.974500i
\(892\) 13.3843 23.1822i 0.448138 0.776198i
\(893\) 15.6603 + 27.1244i 0.524050 + 0.907682i
\(894\) −11.1106 + 11.1106i −0.371595 + 0.371595i
\(895\) −36.5665 63.3350i −1.22228 2.11706i
\(896\) 0 0
\(897\) −16.3923 4.39230i −0.547323 0.146655i
\(898\) −17.7846 −0.593480
\(899\) 3.58630 6.21166i 0.119610 0.207170i
\(900\) 29.7846i 0.992820i
\(901\) 7.93048 + 13.7360i 0.264203 + 0.457612i
\(902\) −2.38014 + 4.12252i −0.0792500 + 0.137265i
\(903\) 0 0
\(904\) −3.46410 6.00000i −0.115214 0.199557i
\(905\) 32.7846 56.7846i 1.08980 1.88758i
\(906\) 1.07244 + 4.00240i 0.0356295 + 0.132971i
\(907\) −21.6244 37.4545i −0.718025 1.24366i −0.961781 0.273819i \(-0.911713\pi\)
0.243756 0.969837i \(-0.421620\pi\)
\(908\) 5.25933 + 9.10943i 0.174537 + 0.302307i
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 23.4641 40.6410i 0.777400 1.34650i −0.156035 0.987752i \(-0.549871\pi\)
0.933435 0.358745i \(-0.116795\pi\)
\(912\) 1.33013 + 4.96410i 0.0440449 + 0.164378i
\(913\) 66.8198 2.21141
\(914\) 7.05256 0.233278
\(915\) −32.9802 + 32.9802i −1.09029 + 1.09029i
\(916\) −12.4877 + 21.6293i −0.412605 + 0.714652i
\(917\) 0 0
\(918\) −27.1865 + 7.28461i −0.897289 + 0.240428i
\(919\) −11.4641 19.8564i −0.378166 0.655002i 0.612630 0.790370i \(-0.290112\pi\)
−0.990795 + 0.135368i \(0.956778\pi\)
\(920\) 2.82843 + 4.89898i 0.0932505 + 0.161515i
\(921\) −18.5263 4.96410i −0.610462 0.163573i
\(922\) 12.8666 22.2856i 0.423740 0.733939i
\(923\) −8.48528 14.6969i −0.279296 0.483756i
\(924\) 0 0
\(925\) −2.66025 + 4.60770i −0.0874686 + 0.151500i
\(926\) −19.3205 33.4641i −0.634911 1.09970i
\(927\) −19.3557 + 11.1750i −0.635724 + 0.367035i
\(928\) 2.00000 3.46410i 0.0656532 0.113715i
\(929\) −27.9797 −0.917983 −0.458991 0.888441i \(-0.651789\pi\)
−0.458991 + 0.888441i \(0.651789\pi\)
\(930\) −8.48528 + 8.48528i −0.278243 + 0.278243i
\(931\) 0 0
\(932\) 12.0622 + 20.8923i 0.395110 + 0.684350i
\(933\) −20.6603 5.53590i −0.676386 0.181237i
\(934\) 13.7818 + 23.8707i 0.450954 + 0.781075i
\(935\) 39.0526 67.6410i 1.27716 2.21210i
\(936\) 20.0764i 0.656217i
\(937\) −9.89949 −0.323402 −0.161701 0.986840i \(-0.551698\pi\)
−0.161701 + 0.986840i \(0.551698\pi\)
\(938\) 0 0
\(939\) 39.1865 + 10.5000i 1.27880 + 0.342655i
\(940\) −20.3923 + 35.3205i −0.665124 + 1.15203i
\(941\) −8.68835 −0.283232 −0.141616 0.989922i \(-0.545230\pi\)
−0.141616 + 0.989922i \(0.545230\pi\)
\(942\) 7.73205 + 2.07180i 0.251924 + 0.0675028i
\(943\) 1.86748 0.0608135
\(944\) −8.62398 −0.280687
\(945\) 0 0
\(946\) −13.9282 −0.452845
\(947\) 6.12436 0.199015 0.0995074 0.995037i \(-0.468273\pi\)
0.0995074 + 0.995037i \(0.468273\pi\)
\(948\) −8.24504 2.20925i −0.267787 0.0717532i
\(949\) −45.7128 −1.48390
\(950\) 14.7291 25.5116i 0.477876 0.827705i
\(951\) −43.4988 11.6555i −1.41055 0.377955i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) 7.60770 4.39230i 0.246308 0.142206i
\(955\) −2.07055 + 3.58630i −0.0670015 + 0.116050i
\(956\) 6.46410 + 11.1962i 0.209064 + 0.362109i
\(957\) 24.9754 + 6.69213i 0.807339 + 0.216326i
\(958\) −7.72741 13.3843i −0.249661 0.432426i
\(959\) 0 0
\(960\) −4.73205 + 4.73205i −0.152726 + 0.152726i
\(961\) −27.7846 −0.896278
\(962\) −1.79315 + 3.10583i −0.0578135 + 0.100136i
\(963\) 10.1769i 0.327946i
\(964\) −11.7112 20.2844i −0.377193 0.653318i
\(965\) 44.5341 77.1354i 1.43360 2.48308i
\(966\) 0 0
\(967\) −17.7846 30.8038i −0.571914 0.990585i −0.996369 0.0851359i \(-0.972868\pi\)
0.424455 0.905449i \(-0.360466\pi\)
\(968\) −1.46410 + 2.53590i −0.0470580 + 0.0815069i
\(969\) −26.8886 7.20479i −0.863788 0.231451i
\(970\) 11.3923 + 19.7321i 0.365785 + 0.633558i
\(971\) 1.50215 + 2.60179i 0.0482062 + 0.0834955i 0.889122 0.457671i \(-0.151316\pi\)
−0.840915 + 0.541166i \(0.817983\pi\)
\(972\) 4.03459 + 15.0573i 0.129410 + 0.482963i
\(973\) 0 0
\(974\) −19.3923 + 33.5885i −0.621370 + 1.07624i
\(975\) −81.3731 + 81.3731i −2.60602 + 2.60602i
\(976\) 6.96953 0.223089
\(977\) −49.9808 −1.59903 −0.799513 0.600649i \(-0.794909\pi\)
−0.799513 + 0.600649i \(0.794909\pi\)
\(978\) −9.55772 35.6699i −0.305622 1.14060i
\(979\) 13.1948 22.8541i 0.421707 0.730419i
\(980\) 0 0
\(981\) 23.1962 13.3923i 0.740596 0.427583i
\(982\) 0.696152 + 1.20577i 0.0222151 + 0.0384777i
\(983\) 3.48477 + 6.03579i 0.111147 + 0.192512i 0.916233 0.400646i \(-0.131214\pi\)
−0.805086 + 0.593158i \(0.797881\pi\)
\(984\) 0.571797 + 2.13397i 0.0182282 + 0.0680286i
\(985\) 5.93426 10.2784i 0.189081 0.327498i
\(986\) 10.8332 + 18.7637i 0.345000 + 0.597558i
\(987\) 0 0
\(988\) 9.92820 17.1962i 0.315858 0.547082i
\(989\) 2.73205 + 4.73205i 0.0868742 + 0.150470i
\(990\) −37.4631 21.6293i −1.19065 0.687424i
\(991\) −0.875644 + 1.51666i −0.0278158 + 0.0481783i −0.879598 0.475717i \(-0.842189\pi\)
0.851782 + 0.523896i \(0.175522\pi\)
\(992\) 1.79315 0.0569326
\(993\) −7.58871 2.03339i −0.240820 0.0645276i
\(994\) 0 0
\(995\) 34.3923 + 59.5692i 1.09031 + 1.88847i
\(996\) 21.9282 21.9282i 0.694822 0.694822i
\(997\) −3.24453 5.61969i −0.102755 0.177977i 0.810064 0.586342i \(-0.199433\pi\)
−0.912819 + 0.408365i \(0.866099\pi\)
\(998\) −6.30385 + 10.9186i −0.199545 + 0.345622i
\(999\) 0.720710 2.68973i 0.0228023 0.0850992i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.e.s.655.4 8
3.2 odd 2 2646.2.e.q.2125.4 8
7.2 even 3 882.2.h.q.79.2 8
7.3 odd 6 882.2.f.q.295.3 yes 8
7.4 even 3 882.2.f.q.295.2 8
7.5 odd 6 882.2.h.q.79.3 8
7.6 odd 2 inner 882.2.e.s.655.1 8
9.4 even 3 882.2.h.q.67.1 8
9.5 odd 6 2646.2.h.t.361.1 8
21.2 odd 6 2646.2.h.t.667.1 8
21.5 even 6 2646.2.h.t.667.4 8
21.11 odd 6 2646.2.f.r.883.4 8
21.17 even 6 2646.2.f.r.883.1 8
21.20 even 2 2646.2.e.q.2125.1 8
63.4 even 3 882.2.f.q.589.2 yes 8
63.5 even 6 2646.2.e.q.1549.1 8
63.11 odd 6 7938.2.a.ci.1.1 4
63.13 odd 6 882.2.h.q.67.4 8
63.23 odd 6 2646.2.e.q.1549.4 8
63.25 even 3 7938.2.a.cp.1.4 4
63.31 odd 6 882.2.f.q.589.3 yes 8
63.32 odd 6 2646.2.f.r.1765.4 8
63.38 even 6 7938.2.a.ci.1.4 4
63.40 odd 6 inner 882.2.e.s.373.1 8
63.41 even 6 2646.2.h.t.361.4 8
63.52 odd 6 7938.2.a.cp.1.1 4
63.58 even 3 inner 882.2.e.s.373.4 8
63.59 even 6 2646.2.f.r.1765.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.1 8 63.40 odd 6 inner
882.2.e.s.373.4 8 63.58 even 3 inner
882.2.e.s.655.1 8 7.6 odd 2 inner
882.2.e.s.655.4 8 1.1 even 1 trivial
882.2.f.q.295.2 8 7.4 even 3
882.2.f.q.295.3 yes 8 7.3 odd 6
882.2.f.q.589.2 yes 8 63.4 even 3
882.2.f.q.589.3 yes 8 63.31 odd 6
882.2.h.q.67.1 8 9.4 even 3
882.2.h.q.67.4 8 63.13 odd 6
882.2.h.q.79.2 8 7.2 even 3
882.2.h.q.79.3 8 7.5 odd 6
2646.2.e.q.1549.1 8 63.5 even 6
2646.2.e.q.1549.4 8 63.23 odd 6
2646.2.e.q.2125.1 8 21.20 even 2
2646.2.e.q.2125.4 8 3.2 odd 2
2646.2.f.r.883.1 8 21.17 even 6
2646.2.f.r.883.4 8 21.11 odd 6
2646.2.f.r.1765.1 8 63.59 even 6
2646.2.f.r.1765.4 8 63.32 odd 6
2646.2.h.t.361.1 8 9.5 odd 6
2646.2.h.t.361.4 8 63.41 even 6
2646.2.h.t.667.1 8 21.2 odd 6
2646.2.h.t.667.4 8 21.5 even 6
7938.2.a.ci.1.1 4 63.11 odd 6
7938.2.a.ci.1.4 4 63.38 even 6
7938.2.a.cp.1.1 4 63.52 odd 6
7938.2.a.cp.1.4 4 63.25 even 3