Properties

Label 12-57e12-1.1-c1e6-0-3
Degree $12$
Conductor $1.176\times 10^{21}$
Sign $1$
Analytic cond. $3.04902\times 10^{8}$
Root an. cond. $5.09346$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $6$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 9·5-s + 9·7-s − 8-s − 9·11-s − 3·13-s + 3·16-s − 15·17-s + 27·20-s − 6·23-s + 33·25-s − 27·28-s − 15·29-s − 81·35-s + 6·37-s + 9·40-s + 6·41-s + 15·43-s + 27·44-s − 9·47-s + 24·49-s + 9·52-s − 6·53-s + 81·55-s − 9·56-s − 15·59-s + 3·61-s + ⋯
L(s)  = 1  − 3/2·4-s − 4.02·5-s + 3.40·7-s − 0.353·8-s − 2.71·11-s − 0.832·13-s + 3/4·16-s − 3.63·17-s + 6.03·20-s − 1.25·23-s + 33/5·25-s − 5.10·28-s − 2.78·29-s − 13.6·35-s + 0.986·37-s + 1.42·40-s + 0.937·41-s + 2.28·43-s + 4.07·44-s − 1.31·47-s + 24/7·49-s + 1.24·52-s − 0.824·53-s + 10.9·55-s − 1.20·56-s − 1.95·59-s + 0.384·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(3^{12} \cdot 19^{12}\)
Sign: $1$
Analytic conductor: \(3.04902\times 10^{8}\)
Root analytic conductor: \(5.09346\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(6\)
Selberg data: \((12,\ 3^{12} \cdot 19^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 3 T^{2} + T^{3} + 3 p T^{4} + 3 p T^{5} + p^{3} T^{6} + 3 p^{2} T^{7} + 3 p^{3} T^{8} + p^{3} T^{9} + 3 p^{4} T^{10} + p^{6} T^{12} \) 6.2.a_d_b_g_g_i
5 \( 1 + 9 T + 48 T^{2} + 188 T^{3} + 609 T^{4} + 339 p T^{5} + 4076 T^{6} + 339 p^{2} T^{7} + 609 p^{2} T^{8} + 188 p^{3} T^{9} + 48 p^{4} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \) 6.5.j_bw_hg_xl_cnf_gau
7 \( 1 - 9 T + 57 T^{2} - 36 p T^{3} + 984 T^{4} - 3186 T^{5} + 9257 T^{6} - 3186 p T^{7} + 984 p^{2} T^{8} - 36 p^{4} T^{9} + 57 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \) 6.7.aj_cf_ajs_blw_aeso_nsb
11 \( 1 + 9 T + 72 T^{2} + 324 T^{3} + 1413 T^{4} + 4311 T^{5} + 15868 T^{6} + 4311 p T^{7} + 1413 p^{2} T^{8} + 324 p^{3} T^{9} + 72 p^{4} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \) 6.11.j_cu_mm_ccj_gjv_xmi
13 \( 1 + 3 T + 66 T^{2} + 12 p T^{3} + 1929 T^{4} + 3657 T^{5} + 32297 T^{6} + 3657 p T^{7} + 1929 p^{2} T^{8} + 12 p^{4} T^{9} + 66 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12} \) 6.13.d_co_ga_cwf_fkr_bvuf
17 \( 1 + 15 T + 138 T^{2} + 900 T^{3} + 4983 T^{4} + 24117 T^{5} + 105892 T^{6} + 24117 p T^{7} + 4983 p^{2} T^{8} + 900 p^{3} T^{9} + 138 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \) 6.17.p_fi_biq_hjr_bjrp_gaqu
23 \( 1 + 6 T + 99 T^{2} + 395 T^{3} + 4065 T^{4} + 12417 T^{5} + 108158 T^{6} + 12417 p T^{7} + 4065 p^{2} T^{8} + 395 p^{3} T^{9} + 99 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \) 6.23.g_dv_pf_gaj_sjp_gdzy
29 \( 1 + 15 T + 249 T^{2} + 2300 T^{3} + 21231 T^{4} + 136605 T^{5} + 861062 T^{6} + 136605 p T^{7} + 21231 p^{2} T^{8} + 2300 p^{3} T^{9} + 249 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \) 6.29.p_jp_dkm_bfkp_hucb_bwztu
31 \( 1 + 150 T^{2} + 10 T^{3} + 10266 T^{4} + 750 T^{5} + 407343 T^{6} + 750 p T^{7} + 10266 p^{2} T^{8} + 10 p^{3} T^{9} + 150 p^{4} T^{10} + p^{6} T^{12} \) 6.31.a_fu_k_pew_bcw_xepb
37 \( 1 - 6 T + 138 T^{2} - 248 T^{3} + 5688 T^{4} + 14688 T^{5} + 146841 T^{6} + 14688 p T^{7} + 5688 p^{2} T^{8} - 248 p^{3} T^{9} + 138 p^{4} T^{10} - 6 p^{5} T^{11} + p^{6} T^{12} \) 6.37.ag_fi_ajo_iku_vsy_ijft
41 \( 1 - 6 T + 159 T^{2} - 635 T^{3} + 11889 T^{4} - 35895 T^{5} + 577886 T^{6} - 35895 p T^{7} + 11889 p^{2} T^{8} - 635 p^{3} T^{9} + 159 p^{4} T^{10} - 6 p^{5} T^{11} + p^{6} T^{12} \) 6.41.ag_gd_ayl_rph_acbcp_bgwwk
43 \( 1 - 15 T + 192 T^{2} - 1678 T^{3} + 15297 T^{4} - 108039 T^{5} + 788787 T^{6} - 108039 p T^{7} + 15297 p^{2} T^{8} - 1678 p^{3} T^{9} + 192 p^{4} T^{10} - 15 p^{5} T^{11} + p^{6} T^{12} \) 6.43.ap_hk_acmo_wqj_agdvj_bswvz
47 \( 1 + 9 T + 6 p T^{2} + 1926 T^{3} + 32541 T^{4} + 171513 T^{5} + 2020408 T^{6} + 171513 p T^{7} + 32541 p^{2} T^{8} + 1926 p^{3} T^{9} + 6 p^{5} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \) 6.47.j_kw_cwc_bwdp_jtsr_ekyua
53 \( 1 + 6 T + 219 T^{2} + 1323 T^{3} + 21777 T^{4} + 126951 T^{5} + 1374406 T^{6} + 126951 p T^{7} + 21777 p^{2} T^{8} + 1323 p^{3} T^{9} + 219 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \) 6.53.g_il_byx_bgfp_hfut_dafdu
59 \( 1 + 15 T + 378 T^{2} + 3870 T^{3} + 55179 T^{4} + 421431 T^{5} + 4291516 T^{6} + 421431 p T^{7} + 55179 p^{2} T^{8} + 3870 p^{3} T^{9} + 378 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \) 6.59.p_oo_fsw_ddqh_xzkx_jkeki
61 \( 1 - 3 T + 213 T^{2} - 584 T^{3} + 21186 T^{4} - 52218 T^{5} + 1453581 T^{6} - 52218 p T^{7} + 21186 p^{2} T^{8} - 584 p^{3} T^{9} + 213 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) 6.61.ad_if_awm_bfiw_aczgk_desgz
67 \( 1 - 18 T + 357 T^{2} - 4373 T^{3} + 54933 T^{4} - 510171 T^{5} + 4792818 T^{6} - 510171 p T^{7} + 54933 p^{2} T^{8} - 4373 p^{3} T^{9} + 357 p^{4} T^{10} - 18 p^{5} T^{11} + p^{6} T^{12} \) 6.67.as_nt_agmf_ddgv_abdarz_kmrze
71 \( 1 + 15 T + 387 T^{2} + 4446 T^{3} + 64233 T^{4} + 581379 T^{5} + 5950702 T^{6} + 581379 p T^{7} + 64233 p^{2} T^{8} + 4446 p^{3} T^{9} + 387 p^{4} T^{10} + 15 p^{5} T^{11} + p^{6} T^{12} \) 6.71.p_ox_gpa_dran_bhcat_naove
73 \( 1 + 6 T + 300 T^{2} + 2038 T^{3} + 43782 T^{4} + 286698 T^{5} + 3940299 T^{6} + 286698 p T^{7} + 43782 p^{2} T^{8} + 2038 p^{3} T^{9} + 300 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \) 6.73.g_lo_dak_cmty_qicw_iqevz
79 \( 1 + 21 T + 420 T^{2} + 6402 T^{3} + 81501 T^{4} + 888861 T^{5} + 8552927 T^{6} + 888861 p T^{7} + 81501 p^{2} T^{8} + 6402 p^{3} T^{9} + 420 p^{4} T^{10} + 21 p^{5} T^{11} + p^{6} T^{12} \) 6.79.v_qe_jmg_eqor_byowz_ssqgt
83 \( 1 - 3 T + 222 T^{2} - 1246 T^{3} + 34209 T^{4} - 157407 T^{5} + 3488216 T^{6} - 157407 p T^{7} + 34209 p^{2} T^{8} - 1246 p^{3} T^{9} + 222 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) 6.83.ad_io_abvy_bypt_aiywd_hqmce
89 \( 1 + 24 T + 531 T^{2} + 7099 T^{3} + 93819 T^{4} + 932253 T^{5} + 9844202 T^{6} + 932253 p T^{7} + 93819 p^{2} T^{8} + 7099 p^{3} T^{9} + 531 p^{4} T^{10} + 24 p^{5} T^{11} + p^{6} T^{12} \) 6.89.y_ul_knb_fiul_cbbbx_vocle
97 \( 1 - 3 T + 306 T^{2} + 110 T^{3} + 38589 T^{4} + 171843 T^{5} + 3552945 T^{6} + 171843 p T^{7} + 38589 p^{2} T^{8} + 110 p^{3} T^{9} + 306 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \) 6.97.ad_lu_eg_cfcf_jufj_hudvt
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.94878760344798356976894159255, −4.58195199960031850052706250319, −4.52472215675713872973959730524, −4.50744205333782977285135270302, −4.42581430432478090244795157032, −4.21920254002293989154188027735, −4.12872075505458328183751923908, −3.85291124518724886613672324076, −3.78367622133806687854695966363, −3.71686977819220528259381968803, −3.69935624935296947930624663105, −3.65419832698165080038354238819, −3.03636985908432318079319446833, −2.86501108053582813416534652847, −2.86377844514094779232650155754, −2.58010749860453153228858284115, −2.55886918603598284297187516164, −2.37992142956395559594063837881, −2.13052696738092534303433129741, −1.95408295893388769779012911268, −1.90900820554912429454232933012, −1.44272690030107891134126914999, −1.35580244253470893880582628165, −1.24355077247316904456532233959, −0.888398102554146291835019554700, 0, 0, 0, 0, 0, 0, 0.888398102554146291835019554700, 1.24355077247316904456532233959, 1.35580244253470893880582628165, 1.44272690030107891134126914999, 1.90900820554912429454232933012, 1.95408295893388769779012911268, 2.13052696738092534303433129741, 2.37992142956395559594063837881, 2.55886918603598284297187516164, 2.58010749860453153228858284115, 2.86377844514094779232650155754, 2.86501108053582813416534652847, 3.03636985908432318079319446833, 3.65419832698165080038354238819, 3.69935624935296947930624663105, 3.71686977819220528259381968803, 3.78367622133806687854695966363, 3.85291124518724886613672324076, 4.12872075505458328183751923908, 4.21920254002293989154188027735, 4.42581430432478090244795157032, 4.50744205333782977285135270302, 4.52472215675713872973959730524, 4.58195199960031850052706250319, 4.94878760344798356976894159255

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.