Properties

Label 6.2.a_d_b_g_g_i
Base field $\F_{2}$
Dimension $6$
$p$-rank $3$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $1 + 3 x^{2} + x^{3} + 6 x^{4} + 6 x^{5} + 8 x^{6} + 12 x^{7} + 24 x^{8} + 8 x^{9} + 48 x^{10} + 64 x^{12}$
Frobenius angles:  $\pm0.182860320188$, $\pm0.308818668718$, $\pm0.413609783026$, $\pm0.596254109314$, $\pm0.645859071324$, $\pm0.882418177107$
Angle rank:  $6$ (numerical)
Number field:  12.0.188838465943828032.1
Galois group:  $D_4\wr C_3$
Jacobians:  $1$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $181$ $22987$ $339013$ $29814139$ $1665734131$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $11$ $12$ $23$ $48$ $56$ $108$ $359$ $435$ $956$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 12.0.188838465943828032.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.a_d_ab_g_ag_i$2$(not in LMFDB)