Properties

Label 960.9542.3.a1.a1
Order $ 2^{6} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}.C_2^4$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(3\)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a, c^{12}, c^{3}, d^{5}, b, d^{2}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5\times D_4^2$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^3:D_{10}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{20}.C_2^4$
Normal closure:$C_{60}.C_2^4$
Core:$C_{20}.D_4$
Minimal over-subgroups:$C_{60}.C_2^4$
Maximal under-subgroups:$C_{20}.D_4$$C_{10}.C_2^4$$C_{20}.D_4$$D_4.D_{10}$$C_{20}.C_2^3$$D_{20}:C_2^2$$C_{10}:\SD_{16}$$D_{20}:C_2^2$$D_{20}:C_2^2$$C_{10}:\SD_{16}$$C_{10}:\SD_{16}$$C_{20}.D_4$$C_{20}.D_4$$C_{20}.D_4$$C_{20}.D_4$$D_8:C_2^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_{30}:C_2^3$