Properties

Label 960.9542.6.i1.b1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}:\SD_{16}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $ad^{5}, d^{2}, c^{3}, c^{6}, bd^{5}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{60}.C_2^4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}:(C_2^3.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_5:(C_2^4.C_2^5)$
$\operatorname{res}(S)$$D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{10}:D_4$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{20}.C_2^4$
Normal closure:$D_{12}.D_{10}$
Core:$C_5:\SD_{16}$
Minimal over-subgroups:$D_{12}.D_{10}$$C_{20}.C_2^4$
Maximal under-subgroups:$C_5:\SD_{16}$$D_4\times C_{10}$$C_5:\SD_{16}$$C_{10}:Q_8$$C_{10}:C_8$$C_5:\SD_{16}$$C_5:\SD_{16}$$C_2\times \SD_{16}$
Autjugate subgroups:960.9542.6.i1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{30}:C_2^3$