Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(2\) |
| Generators: |
$c^{12}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_{60}.C_2^4$ |
| Order: | \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{30}:C_2^3$ |
| Order: | \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Automorphism Group: | $C_{15}:(C_2^4.C_2^6)$ |
| Outer Automorphisms: | $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2^3.C_2^6.C_2)$ |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $D_{30}:C_2^3$ |