Properties

Label 960.414.6.c1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{160}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Generators: $b, b^{16}, b^{2}, b^{4}, c^{3}, b^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:\SD_{64}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2\times C_4\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_8$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2\times C_4\times C_8$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{160}$
Normalizer:$C_5\times \SD_{64}$
Normal closure:$C_3:C_{160}$
Core:$C_{80}$
Minimal over-subgroups:$C_3:C_{160}$$C_5\times \SD_{64}$
Maximal under-subgroups:$C_{80}$$C_{32}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3:D_{16}$